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Abstract 

 
A method was developed to solve the over determined Laplacian approximation 
algorithm (Franklin algorithm) for the interpolation of contour lines to terrain surfaces 
using desktop type computers.  The method is based on the Saunders-Paige LSQR 
iterative Conjugate Gradient solver provided with a very good initial estimate.  The initial 
estimate is computed from the input elevation grid using a fast solver producing a lower 
quality interpolation of the input grid.  The fast solver uses a four-nearest-neighbor 
second order central difference approximation of the Laplacian heat equation.  The 
solution vector produced by the fast interpolation is used as the initial estimate for the 
LSQR solver.  LSQR is then used to solve a sparse matrix representation of the over 
determined system of equations resulting from the Franklin formulation of the Laplacian 
heat equation interpolation.  The result is a high quality interpolation characteristic of the 
Franklin approximation in less time and requiring much less storage than either a direct 
solution (using factorization or row reduction)  or a solution computed by the LSQR 
solver without a good initial estimate. 
 
This is useful because solution of the over determined system of linear equations 
associated with the Franklin algorithm by direct means is computationally expensive 
from both a time and space complexity perspective.  The method developed as part of this 
project  significantly reduces the in-process storage requirements to compute the solution 
vector for large systems of equations, for example one million equations with one million 
unknowns.  The method accomplishes this by use of an iterative least squares solver, the 
well known  LSQR program developed by Saunders and Paige. 
 
The iterative LSQR solver makes more effective use of limited RAM resources as 
compared to the MATLAB direct solver for example, allowing larger problems to be 
solved than with previous methods.  In addition, solution times were reduced  by 
supplying LSQR with a high quality initial estimate.  The fast central difference 
Laplacian algorithm exploits the problem structure to supply this estimate cheaply.  The 
fast solver produces a solution of unacceptable quality as a final interpolation but 
produces an excellent initial estimate for LSQR. 
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1.0 Introduction. 
 
Background 

Interpolating information from known data to unknown data points is one of the classical 
problems of computational cartography.  This technique is used widely in many diverse 
GIS (Geographical Information Systems) applications.  One example is the derivation of 
DEMs  from topographical contour maps for areas where DEMs are not available.  In 
order to do this, DEMs are often reverse-engineered from contour map data.  In this multi 
step process, contour maps are scanned into digital format (if they are not already 
archived that way).  Then the contour line elevation data layer is separated from the other 
information on the map.  The contour line data is then conditioned (to the highest degree 
possible) to correct bleeding, breaks, spurs bridges and other anomalies[1].  

The contours must then be tagged with their elevation values in a machine-readable 
format.  This is typically done by vectorizing the contour lines using a line following 
method[2] and tagging the vectors with their elevations either automatically, or more 
commonly using a semi-automated labor-intensive process.  The tagged vector data is 
then rasterized and  transferred to a grid using an interpolation algorithm. Finally, the 
gridded elevation values are written to some type of GIS format that can be used by other 
applications, such as the USGS ASCII DEM format.   The interpolative step in the 
process is the focus of this proposal.  Often, the interpolation algorithms used to produce 
terrain surfaces from the gridded elevation values are somewhat primitive, for example 
the four-nearest neighbor algorithm derived from the Laplacian Heat Equation PDE.  
This often results in markedly inferior terrain surfaces that exhibit a variety of unnatural 
features, for example terracing. 

One algorithm known to be an improvement over commonly used algorithms for the 
interpolation (or rather the approximation) of known elevations to a regular grid is 
described by Dr. William Randolph Franklin paper entitled Applications of Analytical 
Cartography [3].    
 
The algorithm is based on a novel application of the Laplacian PDE (partial differential 
equation)  whereby a system of over determined linear equations is formulated and 
solved by performing a linear least squares fit to the known data and unknown grid 
nodes.  

The algorithm has several advantages as compared to previous algorithms: 

1) It doesn't require continuous contours; i.e. it can deal with breaks, such as those 
that commonly occur when contours are too closely spaced. 

2) It can use isolated point elevations if known, such as mountain tops. 

3) If continuous contours with many points are available, it can use all the points 
(without needing to sub sample them). 

4) Information flows across the contours, causing the slope to be continuous and the 
contours not to be visible in the generated surface. 
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5) If local maxima, such as mountain tops, are not given, it interpolates a reasonable 
bulge.  It does not just put a plateau at the highest contour. 

6) Unlike some other methods, it works even near kidney-shaped contours, where 
the closest contour in all four cardinal directions might be the same contour. 

7)  It has the advantage of producing a surface virtually free of the negative artifacts 
associated with other interpolation algorithms, for example terracing and ringing.  

8)  It also offers the advantage of allowing the surface smoothness and fit to be 
adjusted by selective weighting of the equations corresponding to the known 
elevations, thereby allowing grid adjustments to be made on a node-by-node 
basis if desired. 

Although the algorithm presents advantages, it also presents computational challenges.  If 
the input elevation grid is of size N by N, the solution is formulated in terms of a N2 by 
N2  coefficient matrix.  Since the number of flops for row reduction for an N by N matrix 
is approximately 2N3/3 flops, the time complexity for solving an N2 by N2 matrix by row 
reduction is (N2)3 = N6 .  Even more significantly, the initial storage requirements are 
large for large input files and these can become even larger during processing due to fill-
in during computation. 

The Franklin algorithm was previously demonstrated on data sets as big as 257 X 257 
nodes using sparse matrix techniques.  Although this was sufficient to demonstrate the 
advantages of the algorithm, real data sets are larger.  Unfortunately, it has not been 
possible previously to apply this beneficial algorithm to realistic data sets using desktop 
computers because of the large computational complexity of solving the linear least 
squares system of equations by row reduction.    

The goal of this project is to develop a computational technique that would allow the 
algorithm to be used  for realistic data sets using small computers.  The target size is 1201 
by 1201 grid postings, the size of a USGS 30 minute Level 2 Digital Elevation Model.  
The task is made difficult by the rapid increase in problem size as a function of the 
number of input elevation nodes.  For example, the full matrix for the Franklin 
formulation of a 1201 by 1201 elevation node input file contains approximately 2e+12 
data elements!   

A further goal was to compare the quality of the grids produced by the algorithm (once a 
computational technique was developed) with a commercially implemented algorithm.  
The hope is thus to apply Dr. Franklin’s algorithm to large data sets using a standard 
desktop computer and to further demonstrate its utility to  the cartographic community. 

Objectives 

The objective of this research project are as follows: 
 

• Develop a computational method for solution of the algorithm described in the 
Dr. William Randolph Franklin paper cited above. 
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•  Demonstrate the computational method using a desktop-type computer solving 
datasets of sizes associated with commonly used digital elevation model (DEM) 
formats (for example input files of 1201X1201 elevation grid nodes). The 
developmental hardware platform is a desktop computer running the Windows XP 
OS with 256MB of memory.  (An HP 1.1GHz laptop was used for some tests.) 

 
 

• Compare the results of the algorithm and computational method with a 
commercial contour-to-grid interpolator:  R2V from Able Software, Inc. and with 
a research grade hydrologic application: CachmentSIM-GIS. 

 
Although a fair amount of code was written during the course of this project, the 
objective was not to produce a production grade software application.  Rather, the goal 
was to develop a computational method that was capable of solving this problem for large 
input data sets through the use of code modules using several developmental 
environments, including the research environment MATLAB.  The integration of these 
experimental modules into a robust application provides an interesting opportunity for 
future work.  The main tasks required for achieving this future goal are discussed in 
Section 14 of this report. 
 
Development Environments Used 
 
Several development environments were used during the course of this work.  The first 
was the well-known scientific math package MATLAB.  MATLAB is an interactive 
developmental and research programming platform designed specifically for matrix 
processing that offers a FORTRAN-like procedural programming language, a library of 
matrix functions, and a wide variety of graphical visualization tools.    Although 
MATLAB is not a general-purpose development environment, demonstrating the 
algorithm using MATLAB modules immediately suggests corresponding 
implementations using production-grade software tools such as C++,  FORTRAN or 
Java. 
 
Although MATLAB  is a wonderfully convenient development environment because of 
its rich library of specialized matrix processing, matrix solving and display methods, it is 
definitely not an all-purpose tool.  Its main disadvantage is that user-defined code 
modules are interpreted rather than compiled, and typically run several orders of 
magnitude more slowly than identical algorithms implemented in C++ or Java, for 
example.  This required the use of alternative development environments for some of the 
fast pre-processing tasks required for this project, particularly for the module used to 
prepare the initial estimate for the iterative solver used in this project and for the module 
that prepared the sparse index file from the raw elevation matrix. 
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2.0 Theoretical and Mathematical Background of the Problem 
 
A brief discussion of the theoretical basis for the Franklin approximation algorithm and 
the method of problem formulation and solution is presented in this section.  The Laplace 
heat equation: 

δ2u/δx2  + δ2u/δy2  = 0 
 

describes many time-independent physical phenomenon including the steady state 
distribution of temperature in two dimensions.  This equation can be solved in closed 
form for simple systems subject to boundary conditions consisting of for example initial 
temperatures at the edges of a rectangular plate.  
 
The Laplace equation has also been used to model equilibrium displacements in a 
membrane, gravitational and electrostatic potentials and certain fluid flows.  It is not 
surprising therefore that it is also applied to topographical systems.  In this case elevation 
is considered a potential  analogous to temperature.  The boundary conditions consist of 
the known elevations at the elevation contours (not necessarily at the edges as is common  
in a heat conduction model) and the equation models the “flow” of elevations from the 
fixed contours to the rest of the system in the same way that heat flows in the plate 
example[7].   
 
Central Difference Approximation of the Laplace Equation 
 
Numerical solution methods are often used in systems where closed form solutions of 
differential equations are difficult or impractical.  The central difference formulas can be 
used to approximate the second derivative of a function f(x)[4] as follows. Consider the 
second order Taylor series approximation of a function f(x) around the point ‘a’: 
 

T(x) = f(a) + f’(a)(x-a) + ½ f’’(a)(x-a)2 + O(n3) 
 

Where O(n3) is an error term resulting from the truncation of the series.  Consider a point 
slightly greater than x so that x-a=∆x or a=x-∆x.  Substituting into the Taylor expansion 
around this point yields: 
 
T(x)   = f(x-∆x) + f’(x-∆x)(x-( x-∆x)) + ½ f’’(x-∆x)(x-( x-∆x))2 + O(x3) 
 
    = f(x-∆x) + f’(x-∆x)(∆x) + ½ f’’(x-∆x)(∆x)2 + O(x3) 
 
T(x+∆x) = f(x+∆x -∆x) + f’(x+∆x -∆x)(∆x) + ½ f’’(x+∆x -∆x)(∆x)2 + O(x3) 
 

= f(x) + f’(x)(∆x) + ½ f’’(x)(∆x)2 + O(x3) 
 

A similar substitution for a Taylor approximation around a point a little less than x where 
x-a = -∆x or ∆x = x+a yields: 
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T(x-∆x) = f(x) - f’(∆x) ∆x + ½ f’’(x)( ∆x)2 + O(x3) 
 
Adding the two equations together gives: 

T(x+∆x) + T(x-∆x) = 2f(x) + (∆x)2 f””(x)+ O(x3) 
 
If ∆x is small the O(x3) error term can be ignored, and T(x) is very close to f(x).  
Substituting T(x)≈f(x) and Solving for f”(x): 

f”(x) = f(x+∆x) + f(x-∆x) – 2f(x)/ (∆x)2   
If f is a continuously differentiable function mapping two dimensional coordinates x,y to 
elevation f(x,y)=z  then 
 

δf(x,y)/δx2 ≈ f(x+∆x,y) + f(x-∆x,y) – 2f(x,y)/ (∆x)2   
 
A similar expansion in the y direction yields: 
 

δf(x,y)/δy2 ≈ f(x, y+∆y) + f(x, y-∆y) – 2f(x,y)/ (∆y)2   
 
If ∆x = ∆y then both of these terms can be replaced with ∆.  Substituting these two 
equations into the Laplace equation yields: 
 

f(x+∆,y) + f(x-∆,y) – 2f(x,y)/ (∆)2  + f(x, y+∆) + f(x, y-∆) – 2f(x,y)/ (∆)2  = 0 
 
Multiplying by ∆2  and collecting terms yields the central difference equation: 
 

f(x+∆,y) + f(x-∆,y)  + f(x, y+∆) + f(x, y-∆) – 4f(x,y)  = 0 
 
 The continuous function f is often approximated by a set of points on a grid or mesh.  In 
this case the central difference equation is defined at the grid points.  The discrete central 
difference equation can be written: 
 

f(i+1,j) + f(i-1, j)  + f(i, j+1) + f(i, j-1) – 4f(i,j)  = 0 
 

If f(i,j) maps grid points to an elevation z then the discrete central difference equation can 
be written in the more concise notation: 
 

zl   + zr  + zu + zld -4 zij = 0 
 

Where the indices refer to the grid nodes to the immediate left, right, up and down grid 
positions relative to the central node. 
 
Applications to Contour Interpolation 
 
Franklin[1] uses the central difference approximation to formulate this problem by 
constructing a system of linear equations: 
 
         zi,j-1 + zi,j+1 + zi+1,j + zi-1,j-4 zij = 0 
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for each node in the input elevation grid.  (This is sometimes referred to as the stencil 
equation).  Since there are N2 grid points this yields an equal number of equations, each 
with N2  (mostly zero) coefficients.  This in turn yields a coefficient matrix   with N4 total 
coefficients.  Since each row is characterized by an equation with exactly five non zero 
coefficients as in the equation above,  each row of this sparse matrix has  N2  entries, of 
which (N2–5) are zeros.  The application of a linear equation solving algorithm yields the 
elevations directly, as long as N is not too large. 
 
However, solving this system produces terrain surfaces exhibiting excessive terracing 
between the known contours in areas where the lower contour lines are longer than the 
higher ones, because the lower elevation contour lines will contribute more toward the 
new center node elevation than the higher elevations.  Also, many of the grid points 
corresponding to contours have known elevations.  If the solution vector is constrained to 
maintain these fixed elevations, the surface will not be continuous across the contours 
and considerable terracing will  result.  If the solution vector is not so constrained, 
inaccurate elevations can occur. 
 
The central difference approximation of the Laplace equation as formulated above can 
also be solved by iterative methods.  For example the central difference approximation 
can be applied to each unknown node in the elevation grid in successive computational 
passes using Jacobi or Gauss-Seidel iterative solvers.  At each iteration a new elevation is 
computed for the central node.  The greater the number of iterations, the closer the 
approximation becomes to the exact solution (if the method converges).  Although fast, 
efficient and compact, the result is no better than that produced by direct solution as the 
underlying formulation of the problem is the same.  However, this technique 
subsequently proved valuable in the multi-level solution approach that was used to solve 
the system. 
 
A Better Formulation of the Problem 
 
Franklin suggests a different formulation of the system of equations, as follows: 
 

1) Pretend that all the N2=M points have unknown elevations zij . 
2) Create an equation for each zij setting it to the average of its neighbors as in the 

equation above. 
3) For each of the K points whose elevation ei are known create an additional 

equation zi  = ei. 
 
This results in the system of equations: 
 

Az=b 
 
where A is an (M+K)  by  M coefficient matrix, z is an M by 1 vector, and b is a (M+K) 
by 1 vector of zeros or known elevation values. 
 
This system is over determined, so a solution exists only when b happens to be in the 
column space of A, which is obviously unlikely. 
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So rather than attempting to solve the system exactly (and unsuccessfully) a linear least 
squares solution can be applied instead.  This technique minimizes the vector: 
 

(b-Az)T  (b-Az) 
 

Where Az is the (projection of b) = bproj on the column space of  the coefficient matrix A 
and (b-Az)T is the transpose of the vector quantity (b-Az).  The solution z to the matrix 
equation Az= bproj is the vector in the column space of A that is closest to b, and is the 
“best” solution to the (probably unsolvable) system Az=b.   Since (b-Az) = b- bproj = e is 
minimized precisely when e is orthogonal to A, then, in matrix terms: 
 

AT(b-Az) z=0. 
 

minimizes e, which is equivalent to: 
 

ATAz=AT b 
 

where ATA is a square, symmetric (M2+K by M2+K) matrix[5] .  This is called the linear 
least squares solution of the problem because it minimizes the sum of the squares of the 
error vector e.  This system has been solved by Franklin for data sets of up to 257 by 257 
nodes using MATLAB sparse matrix utilities and solvers.  However, this problem is 
considerably larger than the direct solution described above by row reduction because of 
the additional matrix multiplications required.  More importantly, the increase in space 
complexity due to the need to store more large data arrays leads to significant 
computational difficulties.   
 
Franklin’s work demonstrated that this formulation can virtually eliminate the 
disadvantages associated with a direct application of the central difference equation.  The 
Franklin formulation does not constrain the solution vector to maintain the known 
elevations but does in fact constrain the grid points corresponding to the known 
elevations to be the average of their four neighbors.  In addition, since the method 
minimizes the squares of the error components, scaling the coefficient and the known 
elevation results in a weighting of that elevation.  This aspect, considered a problem in 
statistical regression application is an advantage here as it allows the user to constrain or 
relax the solution vector’s conformance to the known elevations, thereby balancing 
surface accuracy and  smoothness. 
 
The main problem with this approach is the time and space complexity for computation 
of the solution vector z, particularly on desktop (vector) systems.  Successfully 
overcoming the computational obstacles was the main focus of this project. 
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3.0 Preliminary Investigations 
 
MATLAB Code Modules and their Limitations 
 
A series of MATLAB code modules was written and used throughout this study to 
investigate various solution options.  The MATLAB function sparseA( ) was written to 
formulate the sparse coefficient matrix ‘A’ from the input elevation node matrix using the 
Franklin formulation described above.  The function makeB( ) formulated the right hand 
side (RHS) vector ‘b’ from the same input elevation node matrix.  The function repack( ) 
converted the N2 by 1 solution vector z into a N by N output elevation grid.  Once 
formulated, the system could be solved using the MATLAB native direct solver by 
invoking z=A\b.  An over determined case like the Franklin formulation is detected 
automatically by MATLAB and a least squares solution is formulated and computed.  
Code listings for these routines are attached in Appendix 1. 
 
Experiments with these utilities and the native MATLAB least squares solver indicated 
that the largest problem that could be solved on an eMachines T4200 2.0GHz processor 
with 256MB RAM running the Microsoft XP operating system was about 400 by 400  
elevation nodes.  This yielded a system of 165685 equations and unknowns.  An input 
elevation matrix of 500 by 500 nodes caused an out of memory processor error. 
 
 
Experiments with Alternative MATLAB Solvers 
 
The first tests associated with this project examined some alternative MATLAB tools for 
solving systems of linear equations to see of they offered any computational efficiencies.  
Straightforward solution of the linear least squares equation  solve the equation: 
 

ATAz=AT b 
 

by computing ATA, then ATb, and then solving for z using elimination.  Alternatively, the 
system can be solved by first performing a QR factorization of A. The classical solution 
approach[6] uses the following steps: 
 

1) Compute Q 
2) Compute R using R=QTA 
3) Solve for z using Rz  = QTb 
 

The MATLAB documentation states that for sparse matrices, Q is mostly full.  Since Q is 
an m by n matrix, this would be unfavorable from a computational perspective.  The 
MATLAB documentation suggests computing 
 

[C,R] = qr(A,B) 
 

 for sparse matrices, applying the orthogonal transformations to B, producing C = Q-1*B 
without computing Q.  For sparse matrices, the Q-less QR factorization allows the 
solution of sparse least squares problems with two steps: 
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[C,R] = qr(A,b) 

x = R\c 
 

This method was used to solve an experimental  system of equations.  The tests indicated 
that the computational time and complexity was  identical to that produced by applying 
the MATLAB command z=A\b.  It is considered likely that the above step wise method 
is used by MATLAB  when A\b is invoked.   
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4.0 MATLAB Sparse Matrix Reordering Experiments 
 
When certain operations such as matrix multiplication and particularly the factorizations 
used to solve linear systems are conducted on sparse matrices the density of the matrices 
and thus the storage requirements can increase dramatically.  This is called fill-in.  It has 
been known for some time that the row and column order of a sparse matrix can have a 
large effect on fill-in during these computations.  It has been proven that the computation 
of optimal ordering is NP-hard.  However, there are several heuristics commonly used to 
improve ordering for this purpose.[7]  
 
An investigation was conducted to determine if the computation of the over determined 
Laplacian approximation algorithm (Franklin algorithm) could be improved by using 
alternative row or column orderings of the large sparse coefficient matrix.  The hope was 
that the improvement would be enough to allow processing of files of the target size.  A 
small test system was built and experiments with the reordering schemes provided by 
MATLAB were conducted and noted. 
 
Permutation Vectors 
 
Consider an n by n square matrix A and a  1 by n permutation vector p such that  
 

p=[i1, i2, ...in] , i∈Ι 
 
The MATLAB matrix permutation operator can produce a row or column permuted 
matrix P: 

Prow=A(p, :)  
and 

Pcol = A( : ,p) 
 
where Prow is the matrix with rows permuted according to the encoding in the permutation 
vector p, i.e. 
     Prow = [ rowi1 
       rowi2 
               .  
       . 
       . 
       rowin     ] 
and  

Pcol=[ coli1  coli2  . . . colin ] 
 

The inverse operation can be performed with the vector q computed from the MATLAB 
command: 

q(p) = 1:n 
 
The inverse operation is then: 
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A = Prow(q, :) 
 
for the row permutation or 

A=Pcol(:, q) 
 
for the column permutation. 
 
It is also possible to permute the linear system 
 

Az = b 
 
as long as the permutations are consistent.  That is, it is possible to perform row or 
column permutations on an n by m matrix A as long as the corresponding permutation is 
performed on either vector z or vector b.  For example, to perform a column permutation 
defined by 1 by n permutation vector p on matrix A, first permute the matrix: 
 

Pcol=A(:, p) 
 

Then solve the linear system: 
 

Pcol z = b 
 
Then compute the inverse permutation vector q: 
 

q(p) = 1:n 
 
and then compute z by re-applying the permutation vector: 
 

z = z(q, :) 
 

This technique is valid for an over determined system as well. 
 
Test System 
 
Various reordering schemes were applied to a 200 by 200 node input elevation grid 
consisting of straight rows of contour lines running the width of the map.  A small Java 
utility called InputMatrix.java was used to build this and similar input files.   The grid 
was imported into MATLAB as elevation matrix ‘A’. 
 
Test 1 – Baseline 
 
The first test established the processing time for an unordered MATLAB sparse elevation 
matrix.   Actually, as a result of the way that sparseA.m builds the input matrix and due 
to the structure inherent in the problem, the unordered sparse matrix has a very high 
degree of structure.  This structure tends to place the non zero elements on the diagonal, 
which in fact is one of the heuristics used for certain reordering schemes (see below).  As 
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a result, it is expected that the unordered sparse matrix may actually be closer  
to optimal than to extremely sub-optimal. 
 
 The utilities sparseA.m, makeB.m, and repack.m were used to prepare the input 
matrices.  The program sparseA.m computed a 43,800 by 40,000 sparse coefficient 
matrix.    The characteristics of the computed sparseMatrix can be seen from the 
MATLAB spy plot in Figure 1. below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The program makeB.m computed a 40,000 by 1 right hand side (RHS) vector.  The 
system was then solved using the MATLAB command: 
 

t1=clock; z=sparseMatrix\b; t2=clock; e=etime(t2, t1) 
 
The elapsed time e was 197.86s on a Hewlett Packard 1.1MHz laptop. 
 
Test 2 – colmmd 
 
colmmd is a MATLAB column reordering function returning a permutation vector 
 

p = colmmd(S) 
 
such that p is a minimum degree permutation vector for S. 
 
The permutation vector ‘p’ was calculated for sparseMatrix and then used to permute 
sparseMatrix to colmmdMatrix. The MATLAB spy plot for colmmdMatrix is shown in 
Figure 2. 
 
 
 
 
 
 
 

 
Figure 1. Unordered Sparse Matrix 
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The MATLAB colmmdMatrix\b command was then used to solve z.  The elapsed time 
was 221.87s, definitely not an improvement. 
 
Test 3 - Non Zero Vector Sort 
 
The next test was a column sort by number of non zero elements.  The permutation vector 
was computed by: 
 

p = colperm(sparseMatrix) 
 
Then sparseMatrix was permuted as before.  The MATLAB spy for the matrix 
colpermMatrix is shown in Figure 3 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The computation elapsed time in this case was 174.27s, a slight improvement. 
 
 

 
Figure 2. colmmd Reordered Sparse Matrix 

 
Figure 3. colperm Reordered Sparse Matrix 
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Test 4 – colamd 
 
The MATLAB function colamd returns a permutation based on an alternative minimum 
degree ordering algorithm.  As before, a permutation vector was computed by: 
 

p = colamd(sparseMatrix) 
 
and as before a matrix colamdMatrix was computed by permuting sparseMatrix with p.  
The MATLAB spy for this reordering is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The elapsed time for the computation of the solution vector showed a significant 
improvement this time, dropping to 136.12s. 
 
Test 5 – colamd with spparms Parameter Adjustment 
 
MATLAB provides the function spparms( ) that allows ten minimum degree ordering 
algorithm parameters to be adjusted.   There is a recommended grouping that can be 
invoked using the command: 

spaarms(‘tight’) 
 
that optimizes the algorithm to provide less fill-in at the expense of increased 
computational time for the reordering.  The colamd experiment was rerun after setting the 
parameters ‘tight’.   The MATLAB spy for the matrix spaarmsTightMatrix is shown in 
Figure 5. 
 
 
 
 
 
 

 
Figure 4. colamd Reordered Sparse Matrix 
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This yielded the best processing time of all,  128.735s.  However, inspection of the spys 
for the two colamd matrices shows that they appear to be identical, so any difference in 
processing time might be hardware related.  A replicate run of the ‘tight’ configuration 
showed a processing time of 132.06s, possibly confirming this analysis.   
 
Test 6. – Verification of Solution Recovery using Inverse Permutation. 
 
A test was conducted to determine if the solution vector z could be recovered from the 
permuted solution vector z according to the formula specified above.  This was done for 
the colamd permutation vector p.  The inverse vector q was computed and applied to z .  
The solution vector z was repacked.  The expected contour plot, shown below in Figure 
6, was produced. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
The colamd permutation took only 66% of the run time as compared to the unordered 
matrix, indicating that some improvement as a result of column reordering may be 
possible for larger non-artificial input matrices 
 
 Unfortunately, while significant, the improvements demonstrated in this test were judged 

 
Figure 5. spaarms TightMatrix Reordered Sparse Matrix 
 

Figure 6. Recovered Sparse Matrix 
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not enough of an improvement to approach the goal of processing a 1201 by 1201 node 
elevation grid.  
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5.0 METIS Reordering Experiments 
 
The search for productive matrix reordering algorithms was next extended beyond 
MABLAB.  This search indicated that the developmental  and research software package 
METIS might be a good candidate for producing useful reordering schemes. 
 
METIS was obtained by downloading from the site http://www-
users.cs.umn.edu/~karypis/metis/.  METIS is a family of multilevel partitioning 
algorithms developed at the University of Minnesota.  The package contains several 
utilities for graph partitioning, mesh conversion and, of particular interest: sparse matrix 
ordering.  The accompanying documentation was clear and well-written but lacked  
theoretical depth. 
 
The first problem to be solved was understanding how the program worked.  The METIS 
input file format is called a graph file and is composed of connectivity and edge and 
vertex weight information such that each line of the graph file corresponds to one graph 
node.  It was apparent that this program was aimed at graph applications primarily.  The 
seven node graph example included in the documentation was used to help generate the 
correct graph file format from the node and edge information provided in the example. 
 
The adjacency matrix corresponding to the example graph was then generated and 
represented in MATLAB sparse matrix format.  The MATLAB function called 
makeGraph.m was written to convert the MATLAB sparse representation of the 
adjacency matrix to METIS graph file format.  This utility produced a graph file called 
outfile.graph.  The METIS utility graphchk was then run on outfile.graph to check the 
correctness of the generated file.  This worked satisfactorily.  The reordering programs 
oemetis.exe and onmetis.exe were run on outfile.graph.  This produced two versions of 
outfile.graph.iperm, the permutation vectors.  These vectors were of the correct 
dimension and contained no obvious mistakes. 
 
A problem arose when running graphchk.exe on a METIS graph file generated from a 
MATLAB sparse matrix generated from a small (4 by 4) test elevation contour file.  
Apparently, METIS can only process symmetric matrices, i.e. only valid adjacency 
matrices where if coefficient c1 indicating an edge between node i and node j is present, a 
corresponding coefficient c2 = c1 exists indicating that the same edge between node j and i 
is also present.  Unfortunately, this is not the case for sparse matrices derived from 
elevation contours which are generally asymmetric.  METIS also does not accept edges 
that start and end at the same node, meaning that no non zero diagonal matrix entries are 
permitted. 
 
The MATLAB minimum degree ordering utilities are able to somehow handle 
unsymmetrical matrices.  Lacking any information from the MATLAB documentation as 
to exactly how this was done, it was therefore decided to try to force METIS to suggest a 
permutation vector by direct means.  The strategy was to modify the input sparse matrix 
so that METIS would accept it.  METIS was then asked to compute a permutation vector.  
This permutation vector was itself used to reorder the columns or the rows or both for the 



 
 

 
 

21

original (unmodified) sparse matrix.  (Since the permutation vector is 1 by n the columns 
can be permuted directly.  The permutation vector must be augmented in order to perform 
the corresponding permutation on the rows.  See below.) 
 
In order to accomplish this, the sparse input matrix needed the following: 
 

1) It must be converted to a square matrix; 
2) it must not have any non-zeros on the diagonal; 
3) it must be symmetric. 

 
Condition (1) was accomplished by removing the code from sparseA.m that concatenated 
the equations resulting from the known elevations onto the square sparse Matrix from 
containing the unknown equation coefficients.  Condition (2) was accomplished by 
extracting the diagonal matrix, multiplying it by (-1) and then adding it to the sparse 
matrix to zero out any non zero coefficients on the diagonal.  Then (3) was accomplished 
by converting all non zero elements to ones and then reflecting every non-zero element 
across the diagonal.  These were all accomplished in makeGraph.m. 
 
After debugging, the permutation vector for a 50 by 50 elevation contour test file was 
computed using METIS utilities oemetis.exe and onmetis.exe.  Both the columns and the 
rows were permuted using these vectors.  The column permutation was straightforward 
because the dimensions matched.  In order to permute the rows, extra permutation indices 
were concatenated to just copy the rows corresponding to the known elevation equations 
to the permuted matrix unchanged. 
 
The MATLAB spy plot for the column permutation is shown below in Figure 7 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The plot is interesting in that the algorithm seems to “clump” the coefficients into regions 
of high density and low density, the column permutation matrix seemingly blocked along 
the anti-diagonal.  The MATLAB solver was run on the column permuted matrix and 
also the unpermuted sparseMatrix as the control.  The results are in Table 1. 

 
Figure 7. METIS Column permutation Sparse Matrix 
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Table 1 Column Permutations 
 
Permutation METIS 

Algorithm 
Input File Size Sparse Matrix 

Size 
Solution Time 

none none 50 by 50 2700 by 2500 0.4530 
none none 50 by 50 2700 by 2500 0.4850 
none none 50 by 50 2700 by 2500 0.4840 
column oemetis 50 by 50 2700 by 2500 0.5310 
column onmetis 50 by 50 2700 by 2500 0.5310 
column onmetis 50 by 50 2700 by 2500 0.5000 
column onmetis 50 by 50 2700 by 2500 0.4840 
column onmetis 50 by 50 2700 by 2500 0.4850 
column oemetis 50 by 50 2700 by 2500 0.4840 
 
The first round of testing showed that the column permutations did not outperform the 
unpermuted sparse matrix.  A second round of tests was run for a row permuted matrix 
permuted with the augmented permutation vector.  These results are shown in Table 2. 
 
Table 2 . Row Permutations. 
 
Permutation METIS 

Algorithm 
Input File Size Sparse Matrix 

Size 
Solution Time 

none none 50 by 50 2700 by 2500 0.5470 
none none 50 by 50 2700 by 2500 0.5620 
row onmetis 50 by 50 2700 by 2500 0.5160 
row onmetis 50 by 50 2700 by 2500 0.5150 
 
(Note: the run times for both the control and the test cases were slower .  However,  the 
test case ran faster than the control in the row permutation test and slower or equal to the 
control for the column permutation test.) 
 
The tests on the 50 by 50 elevation grid were not encouraging but not entirely conclusive 
either.  The problem was that the total run time for the MATLAB solution was less than a 
second, typically less than half a second.  Small hardware variations unrelated to the 
problem introduced a standard error that was significant when compared to the measured 
elapsed time.  As a result a larger problem was run that was known to have a longer 
computational time. 
 
Larger Elevation Grid Input File 
 
The procedure was the same as used for the 50 by 50 node test: a square sparseMatrix 
was computed, and then the METIS graph file was computed from it using 
makeGraph.m.  The METIS utility onmetis.exe was then used to compute 
outfile.graph.iperm, the permutation vector.   
 



 
 

 
 

23

After incrementing each element of the permutation vector by one, the rectangular 
sparseMatrix was recomputed.  The column reordered permutationMatrix was computed 
from it using the permutation vector q.  The system was then solved using MATLAB:  
 

permutationMatrix\b. 
 
The elapsed time for this computation was 125.3120s.  The corresponding time for the 
control calculation was 120.030s, indicating no improvement as a result of the 
permutation.  The spy plot for the permutationMatrix is shown below in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next a row permutation was attempted using the same technique as for the 50 by 50 node 
test.  A new permutation vector was constructed by augmenting the old permutation 
vector so that its row dimension matched sparseMatrix.  It was then used to compute a 
row permuted permutationMatrix and solved the system 
 

permutationMatrix\b. 
 

The solution time was 103.5320s, an improvement of about 16%.  As a final check,  the 
control was rerun.  Virtually the same computation time of 120.4370s was observed.   
The data is summarized in Table 3. The spy plot for the row permutation is shown below. 
 
 
 
 
 
 
 
 
 

 
Figure 8. METIS Column Permutation Sparse Matrix 
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Table 3 . Column and Row Permutations: 200 by 200 Node Input File. 
 
Permutation METIS 

Algorithm 
Input File Size Sparse Matrix Size Solution 

Time 
none none 200 by 200 43800 by 40000 120.0310 
column onmetis 200 by 200 43800 by 40000 125.3120 
none none 200 by 200 43800 by 40000 120.4370 
row onmetis 200 by 200 43800 by 40000 103.5320 
 
Although the METIS onmetis.exe row permutations consistently produced  faster 
computation  times than the unordered MATALB control, the improvement was not 
better than the best MATLAB permutation.   
 
Although it is possible that an ordering scheme that outperforms the MATLAB 
unsymmetrical minimum degree ordering algorithm exists, it was considered  more likely 
that a point of diminishing returns was realized for this approach and that the limited time 
could be better spent working on alternative strategies to reduce computational time. 
 
This part of the study was concluded with an understanding of row reduction techniques 
that can reduce the computational time for the over determined Laplacian system by 15 to 
33 percent through use of the reordering algorithms described in this section.  While this 
improvement is considered quite substantial, it was not considered of sufficient 
magnitude to warrant further investigation. 
 
It must be remembered that the reason for this study was to find computational methods 
that would allow the solution of larger systems of over determined linear equations 
formulated by the Franklin algorithm.  The main reason for the failure to compute such 
systems was not excessive computational time, but was in fact excessive in-process 
memory requirements. 
 
It might seem prudent at this point to determine if the best reordering scheme, as applied 
to solution of systems generated by the Franklin Algorithm, would significantly reduce 
memory requirements commensurate or in excess of the reduction in computational time.  

 
Figure 9. METIS Column Permutation Sparse Matrix 
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This was not done because the size of the reduction in computational time (used as a 
screening method) was not sufficient to justify further study.  It is expected that the 
problem size grows at least as a polynomial function of the number of input nodes.  
Therefore, reduction in the solution times better than those observed in this study are 
required if the target problem (1201 by 1201 elevation nodes) is to be successfully 
solved. 
 
As a result further study was not conducted and a new approach to the general problem 
was started. 
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6.0 Saunders-Paige LSQR Experiments using Well-Behaved Experimental Input 
Files 

 
After achieving only limited success toward the goal of  solving large input data sets 
using the MATLAB linear least squares solver, a search was conduced for alternative  
solvers. One of the most interesting candidates was the LSQR package offered by the 
Software Optimization Library of the department of MS and E at Stanford University.  
The software was written by Dr. C.C. Paige and Dr. M.R. Saunders.  The software is 
implemented in C, Fortran77 and MATLAB.  It solves Ax=b for consistent systems or 
minimizes: 

 
|| Ax - b || or 

sqrt( || Ax - b ||2 + d||x||2) 
 
for over determined systems, where d is a damping parameter.  The solver uses a method 
based on Golub-Kahan bidiagonalization. It is algebraically equivalent to applying the 
symmetric conjugate gradient (iterative) method to the normal equations: 
 

(A'A + d2 I) x = A'b 
 
but according to the authors[8] has better numerical properties, especially if A is ill-
conditioned.    
 
This package was interesting for two reasons. Experiments with iterative solvers during 
the proposal stage of this project indicated that this type was very efficient both from a 
computational and memory use standpoint for the solution of consistent systems using the 
Laplacian PDE formulation.  Iterative solvers also allow a certain degree of flexibility 
because solution accuracy may be traded off for decreased run time if necessary.  The 
LSQR solver also met another criterion: it was ported to  non MATLAB platforms, 
allowing a migration path from the developmental environment if the subsequent tests 
proved successful.   
 
 
Initial Tests 
 
The first approach was to use the MATLAB lsqr.m and other files offered on Dr. 
Saunder’s download page to solve a small problem.  It was then intended to investigate 
the C implementation once the MATLAB implementation was understood adequately. 
 
Two files are required: lsqr.m and aprob.m, where lsqr.m is the solver and aprob.m 
defines the matrix A through its multiplication algorithm.  (The iterative technique is 
based on a recursive application of multiplication of a matrix Nx(k-1) where x(k-1)  is the 
(k-1)th iterative approximation of the solution vector.  Therefore, efficient matrix 
multiplication algorithms are essential for the rapid solution of large problems.  (It is 
common to define the matrix multiplication algorithm, rather than the matrix itself in the 
case of large sparse matrices, where the latter would be cumbersome or impossible to 
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handle explicitly.) 
 
After some initial problems understanding the modules, Dr. Saunders was contacted at 
Stanford by email with some questions.  Dr. Saunders graciously provided a detailed 
reply with much of helpful advice.  The most helpful piece of information was that LSQR 
was implemented in MATLAB as a native routine, obviating the need for the functions 
provided on the website, at least for research purposes.  
 
The subsequent LSQR tests described in this report were all run on the native MATLAB  
implementation.  InputMatrix.java, included in the Java Code Appendix 2 was used to 
prepare many of the test input files used for this section.   
 
Native MATLAB LSQR( ) Implementation Tests: 50 by 50 Node Input Elevation Grid 
 
A first test was conducted on a 50 by 50 node input elevation matrix to ensure that  the 
function call syntax was understood.  Input was of the form: 
 
input5; 
sparseMatrix=sparseA(A); 
b=makeB(A); 
z = LSQR(sparseMatrix, b, 10e-06, 100) 
 
Where input5 is the InputMatrix.java generated 50 by 50 input grid; sparseMatrix = 
sparseA(A) is the MATLAB sparse representation of the Laplacian PDE  matrix; b is the 
over determined Laplacian RHS vector;  z is the solution vector; 1-e-06 is the 
convergence tolerance and 100 is the maximum number of iterations. 
 
The method computed the solution to a relative residual of 0.051 using 0.7110 seconds.  
Computing 200 iterations returned a relative residual of 0.0072 in a time of 1.3520 
seconds, indicating that solution time was linear with the number of iterations specified, 
as expected. 
 
Repacking z using repack( ) and viewing using contourf( ) produced the Figure 10 plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. LSQR 50 X 50 Repacked Solution Vector 
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This plot is indistinguishable from the corresponding plot produced by the MATLAB 
direct solver. 
 
Native MATLAB LSQR Implementation Tests: 200 by 200 Node Input Elevation Grid 
 
Next, the solution of a 200 by 200 elevation node input file was attempted using 
operations similar to those described above.  The MATLAB command: 
 

z = LSQR(sparseMatrix, b, 10e-06, 50) 
 
where sparseMatrix is the MATLAB sparse representation of the Laplacian PDE  matrix 
derived from the 200 by 200 input file solved the system in 6.669s to a relative residual 
of 0.048s. 
 
Repeating the test with 200 iterations LSQR solved the system in an elapsed time of 
25.937s to a relative residual of 0.0064. 
 
The MATLAB direct solver processing files generated by sparseMatrix and b as a control 
required an elapsed time of 224.3s. 
 
 
Native MATLAB LSQR( ) Implementation Tests: 500 by 500 Node Input Elevation Grid 
 
The next test was on a 500 by 500 node input grid.  This was not solvable using the 
MATLAB direct solver on the test hardware platform.  The MATLAB input command: 
 

z = LSQR(sparseMatrix, b, 10e-06, 200) 
 
where sparseMatrix is the MATLAB sparse representation of the Laplacian PDE  matrix 
derived from the 500 by 500 node input file solved the system in an elapsed time of 
108.07s to a relative residual of 0.004. 
 
Repeating the test for 400 iterations solved the system in 216.1720s to a relative residual 
of 0.0002. 
 
This result was encouraging in two respects.  Firstly,  LSQR was able to easily handle an 
input file larger than that handled by the MATLAB direct solver.  Also, the solution time 
seemed to grow relatively slowly with input file size. 
 
Native MATLAB LSQR( ) Implementation Tests: 800 by 800 Node Input Elevation Grid 
 
The final test was an 800 by 800 elevation node input grid.  This was larger than the 
largest file previously solved by the MATLAB direct solver using a computer with 
1024MB of RAM.  The following MATLAB  commands were input: 
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input80; 
sparseMatrix=sparseA(A); 
b=makeB(A); 
size(sparseMatrix) 
703,200, 640,000 
z = LSQR(sparseMatrix, b, 10e-06, 200) 
 
where sparseMatrix is the MATLAB sparse representation of the 800 by 800 node input 
file.  LSQR solved the system in an elapsed time of 276.0940s to a relative residual of 
0.0031. 
 
Repeating the test for 400 iterations solved the system in 551.9380s to a relative residual 
of 9.8e-05. 
 
The contour plot of the repacked solution vector is shown below in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The plot shows that the solution is at least reasonably close to the expected result.  
Inspection of the output file showed a maximum computed solution value of 7936.1 fitted 
to an input file with a maximum contour line value of 7900.0. 
 
These initial tests of the LSQR algorithm were encouraging for the reasons previously 
stated: 
 

1) Problems close to the target problem size could be easily handled by LSQR. 
2) The computation time grew very slowly with respect to problem size as compared 

to the MATLAB direct solver. 
3) The solutions produced by the LSQR method appeared to compare favorably with 

those produced by the direct solver.  For example, the difference between a 400 

Figure 11. LSQR 800 X 800 Repacked Solution Vector 
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iteration LSQR computation of a 50 by 50 input elevation grid and the 
corresponding direct solution was essentially nil (~2.71e-08 for a 436.2622 
computed elevation value.) 
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7.0 Saunders-Paige LSQR Experiments using Input Files Selected to Exercise 

LSQR more Fully 
 
The initial tests with LSQR were very encouraging, with the program processing files in 
much less time than the MATLAB direct solver.  More importantly, processor memory 
requirements were also much lower.  However, there were several deficiencies in the 
initial test series that needed to be addressed. 
 
No quantitative estimate of the agreement between the LSQR solution and the direct 
solution was computed.  In addition, the largest file processed was 800 by 800 elevation 
grid nodes.  Since the target was 1201 by 1201 grid nodes, it was necessary to attempt 
this larger input file size. 
 
 Moreover, the tests were conducted with very simple input files with a constant elevation 
gradient from one end of the grid to the other.   The initial tests were run on test grids 
produced by the Java program InputMatrix.  This program was written to output a mock 
contour line grid.  The grid contour lines were evenly spaced at 10 unit increments, they 
were all parallel, their elevation values increased linearly across the grid, and they were 
parallel or perpendicular to the grid borders.  This format was chosen because a correct 
interpolation could be determined at a glance at the 2D contour plot output.  It was 
suspected that performance might be degraded if more realistic files were processed. 
 
In order to determine this,  a series of increasingly more complex input files were 
prepared and used to exercise LSQR.  The first test run, however was designed to obtain 
a more quantitative comparison between the LSQR solution and the direct solution. 
 
 
Test 1. Comparison of  LSQR Solution of 200 by 200 Node Input Grid Produced by 
InputMatrix with MATLAB Direct Solution  
 
The 200 by 200 grid simple input file computed by LSQR in the last section was 
recomputed and compared to the corresponding MATLAB direct solution.  A difference 
matrix was computed: 
 

difference = c – cc 
 
where c is the repacked solution vector from the direct solution and cc is the repacked 
solution from the LSQR solution.   The MATLAB Statistic (max(max)) (which computes 
the maximum value in the matrix)  was computed on the difference matrix and found to 
be 6.6734.  Then a contour plot of ‘difference’ was computed and inspected for the 200 
by 200 node solution.  This showed visually the differences between the two solutions 
across the height and width of the grid.  The results showed generally good agreement 
between the two solvers.  However, there was a deviation at the “lowest” edge of the 
difference plot that was difficult to explain at the time but the reason for which 
subsequently became clearer.  A contour plot of the difference matrix is shown below. 
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Test 2. 1201 by 1201 Input Grids 
 
As an extension of the above testing, a 1201 by 1201 node input grid was run to see if 
LSQR could handle a file this big.  A suitable input file was prepared using InputMatrix 
and a solution was attempted.  However, this approach did not work for the 1201 by 1201 
grid as the routine never got past the sparse matrix preparation code after 24 hours of 
trying.   The reason, as discussed before, is the extremely poor performance of MATLAB 
user-defined code modules. 
 
As a consequence, a C++ program called Sparse was written to prepare a MATLAB 
sparse matrix index file from an input elevation grid.  (The code listing is included in 
Appendix 3.)  MATLAB allows importation of sparse matrices using such an index file 
format.  Although the input files can be quite large, despite the sparse data structure, 
formulating the sparse matrix using Sparse was much faster than the MATLAB method, 
requiring only a few minutes of processing time.   
 
Using this technique, LSQR was able to solve the system in 1.586e+04 seconds using 
400 iterations.  Although no direct solution was available to compare it with, (because the 
file was too big for the MATLAB direct solver) the contour plot was reasonable and the 
computed values were as expected.  The output contour plot for the 1201 by 1201 test file 
is shown below in Figure 13. 
 
 
 
 
 
 
 
 

 
           Figure 12. LSQR 200 X 200 Difference Plot 
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Test 3 Wavy.dat 
 
The next test was designed to investigate the performance of the LSQR solver when used 
on  irregular input grids.  InputMatrix was modified to produce a more irregular input 
grid.  Instead of increasing regularly from minimum to maximum, the contour lines 
generally increased, but in an irregular “wavy” pattern.  The contour lines were no longer 
evenly spaced.  However, the contour lines were still parallel and still column aligned in 
the input grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the LSQR computation are shown in the mesh plot above left (Figure 14), 
while the direct solution is to the right (Figure 15).  The solution tracked the input 
contour lines closely, fitting a smooth surface to the contour lines in 200 iterations. 
 
The Figure 16 plot shows the difference contour for the LSQR and direct solutions.  
Differences between the two plots were negligible. 
 
 
 

Figure 14. LSQR  wavy.dat  Solution Vector 

 
Figure 15. MATLAB direct Solution Vector 

 
Figure 13. LSQR 1201 X 1201 Repacked Solution Vector 
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Test 4 square.dat 
 
 
As a second test of an irregular input grid the instructor-supplied ‘square.dat’ was used.  
This grid was specially constructed to present problems to interpolation algorithms.  The 
file is characterized by square, concentric contour lines.  Poor interpolators produce a 
stepped pyramid, while good ones produce a smoother surface.  The LSQR solver 
produced  a solution that was very close to that produced by the direct solver.  Mesh plots 
of the solutions produced by the two solvers are shown below in Figures 17 and 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The difference contour for the two plots is shown below in Figure 19. 
 
 
 
 

 
 

 
         Figure 16. wavy.dat Difference Plot 

 
Figure 17. LSQR square.dat  Repacked Solution 
Vector 

 
Figure 18. Direct Solver Repacked Solution Vector 
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Test 5. Tuckermans.dat 
 
The next test was run on the instructor-supplied input grid of Mt. Washington, NH 
derived from an actual USGS contour map and called tuckermans.dat.  This was an 800 
node by 800 node file, well within LSQR’s demonstrated solution capability.  A Sparse 
matrix index file and a RHS vector was prepared using Sparse as with the 1201 by 1201 
grid described above. 
 
The input file was solved by LSQR using 200 iterations in about 250 seconds.  
Unfortunately, the solution computed by LSQR was grossly in error, with many large 
negative elevations resulting.   The surface and contour plots for this run are shown 
below in Figures 20 and 21.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 19. square.dat Difference Matrix 

 
          Figure 21. LSQR tuckermans.dat contourf plot 

 
 
Figure 20. LSQR tuckermans.dat Repacked Solution 
Vector 
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Test 6 tuckermans.dat Subset Diagnostic Tests 
 
 
It was not obvious why the solution failed so badly after  the previous successes.  The full 
tuckermans.dat file was too large for convenient diagnostic testing so it was subsetted and 
a series of LSQR solutions was run on the subset file.  A parallel direct solution was run 
on each of the subsetted files to help see where the problem was occurring. 
 
The first test was with a 50 by 50 node subset.  This computed correctly using LSQR in 
500 iterations, producing results that were very similar to those produced by the direct 
solver.  If less than 500 iterations were used the results were poor. 
 
Next a 100 by 100 node grid was computed using LSQR.  In this case 500 iterations did 
not converge but 1000 iterations did. 
 
Finally,  a 400 node by 400 node subset was run.  This solution produced persistent 
negative elevation “islands” that required many iterations to overcome.  Ultimately, 3000 
iterations were required before a satisfactory solution was produced.  This indicated that, 
at least for this input file the solution was initially unstable but did not explode and 
ultimately did converge.  The larger the file, the more iterations seemed necessary for 
convergence.    
 
The elevation contours below show the result of the direct solution (Figure 22) ,  the 
LSQR solution after 2000 iterations (Figure 23), and the LSQR solution after 3000 
iterations (Figure 24) for the 400 by 400 node input file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test 7.  Initial Guess Test. 
 
 
Another test was conducted to determine the effect of the initial guess on convergence for 
LSQR.  The LSQR program allows an initial guess vector to be supplied as a parameter 
when the function is called. 
 
The 50 by 50 node subset of tuckermans.dat was again used as input.  The system was 

Figure 22.  400 X 400 Direct Solution Figure 23. LSQR 400 X 400 2000 Iterations Figure 24. LSQR 400 X 400 3000 
Iterations 
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solved using LSQR and  it was determined that it took approximately 500 iterations to 
converge with the default initial guess of x0=0. 
 
The same solution was attempted again but with an initial guess of x0=ones(2500, 1) * 
1000, this vector being chosen because 1000 was estimated to be the approximate 
average elevation.  This choice reduced the number of iterations to converge to 400. 
 
A third test was attempted, this time setting x0=ones(2500, 1) * max(max(A)) where A is 
the elevation grid.  This allowed the solution to converge after 300 iterations, cutting 200 
from the default estimate solution. 
 
Tuckermans.dat Test Rerun 
 
The tuckermans.dat file was again solved by LSQR, this time making a better initial 
guess and using more iterations.  Previous experience indicated that 5000 iterations could 
be accommodated in an overnight run.   
 
The initial guess was x0=ones(640000, 1) * max(max(tuckermans)), i.e.  a column vector 
of the maximum elevation values in the input file.  (The maximum elevation was the best 
of the three initial guesses tried earlier, the others being the average elevation and all 
zeros).  The MATLAB command: 
 
z=LSQR(sparseMatrix, tuckermans_b, 10e-06, 5000, [ ], [ ], x0) 
 
was invoked.  The elapsed time for the run was 6.7486e+03 s, with a relative residual of 
0.00052.  This run was more successful and appeared to converge properly.  A contour 
plot and a mesh plot corresponding to this run are shown below in Figures 25 and 26. 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
 
 
 
 
This series of tests indicated the following: 
 

        Figure 25. LSQR tuckermas.dat Repacked 
Solution 

 
Figure 26. LSQR tuckermas.dat Repacked Solution Vector 
5000 Iterations mesh Plot 
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1) The LSQR solutions agreed well with MATLAB direct solutions for input files 
specially constructed to exercise interpolation algorithms. 

 
2) A very serious LSQR solution problem was introduced when a real input grid was 

attempted. 
 
3) The problem seemed to be characterized by an initial instability that developed 

relatively quickly, subsequently requiring many iterations to converge.  It seemed that 
the larger the input file, the greater the initial instability and the greater the number of 
iterations required to recover. 

 
4) The problem seemed to be highly correlated to the orientation of the contour lines in 

the grid, with parallel or perpendicular contour lines behaving well, even if they were 
irregularly spaced and of uneven elevation.  (This type of file may converge faster 
than a smooth file due to the nature of the iterative processor.) 

 
5) A better initial guess led to significantly better convergence in a small test file. 
 
6) A better guess and more iterations yielded a successful result for the tuckermans.dat 

file. 
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8.0 Interpolating Difficult Input Terrains using LSQR 
 
The instructor-supplied crater.dat input file is a somewhat larger (900 by 900 elevation 
node) input file.  This elevation contour file was chosen to be particularly difficult to 
interpolate because it contains the top of a steep mountain terminating in a crater falling 
off even more steeply into a lake. An attempt was made to solve it using the Saunders-
Paige LSQR iterative solver and the techniques described in the previous report as a 
further test of those techniques.  They were inadequate for this file and initially, very 
poor results were obtained using them. 
 
The initial guess was a column vector of 810,000 maximum elevation values (7680 feet).  
The LSQR solver was run using 1000, 2000, 3000 and 5000 iterations without success.  
The problem seemed to be convergence again.  The maximum run time was 8.49e+03 
seconds with a relative residual of 0.0013. 
 
A 200 by 200 node subset of the larger file was again used to investigate the problem.  
The subset included both the rim of the crater, the steep slope, and the lake.  Tests 
indicated that the subset converged slowly to a correct-looking solution with the lower 
left corner of the map (the lake section) converging last. (Better convergence was 
apparently obtained because of the smaller size of the input file.) 
 
Next, the subset input file was run with an initial guess of the minimum elevation instead 
of the maximum.  This performed much better, converging after only 500 iterations.  
Finally, an initial guess of intermediate value, 6800 feet was attempted.  This did not 
converge as quickly as the minimum.  (It became apparent after subsequent tests that the 
minimum elevation worked best in this case because of the problematic lake area of the 
map.  An initial guess close to the lake elevation helped this troublesome area the most.) 
 
It was apparent at this point that the nature of the terrain, i.e. the high ridge dropping off a 
sharp cliff into a flat lake was a particularly difficult interpolation problem.  The exercise 
also confirmed the importance of file size and initial guess on solver performance. 
 
 
Test 2. Second Trial of crater.dat 
 
The full crater.dat file was rerun using the minimum elevation as the initial guess (based 
on the previous test results) in the hope that this would improve convergence.  
Unfortunately, this did not occur as the solution did not converge after 5000 iterations. 
 
 The crater.dat file was next run using the minimum elevation as the initial estimate and 
10,000 iterations of LSQR.  This took 1.69e+04 seconds and returned a relative residual 
of 0.00029.  The resulting mesh plot looked much better but there were still minor but 
obvious areas of non convergence.  (Note: the relative residual has proven to be a quite  
useless indicator of convergence or correctness of solution for interpolating terrain.  
These problems are characterized by relatively good convergence for the majority of the 
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map and minor but significant errors in small sections of the map.  This results in a low 
relative residual (which is a combined error term like a norm) but an unacceptable map.) 
 
Finally, crater.dat was run using LSQR and 20,000 iterations.  This ran in 3.396e+04 
seconds with a relative residual of 0.00029.  This plot looked better except for a very 
obvious undershoot problem at the foot of the cliff (in the lake) and some less obvious 
“phantom”  gullies (i.e. gullies with no corresponding contours) at the edges of the map.  
The result of this computation is shown in the figure below in Figure 27. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test 4. Matrix Preconditioning 
 
Dr. Saunders, in his email in response to an email enquiry suggested the following 
advice: 
 
“Also, be sure to note the recommendation about scaling the columns of ‘A’ to have the 
same Euclidean norm.  This is diagonal preconditioning. The hope is that LSQR will 
converge quickly enough. If you're very lucky, it might need only a few hundred 
iterations.” 
 
As a result, the MATLAB function ‘scale.m’ was written.  This program returned a 
sparse diagonal matrix such that when used to post multiply ‘A’ produced a normalized 
matrix (all the column vectors having length one).  The math for this preconditioning is 
as follows: 
 
For the system: 
 
[A] [x] =[b] 
 
([A][D]) ([D]-1 [x]) = [b] 
 

undershoot

gully

gully

undershoot

gully

gully

Figure 27. LSQR crater.dat Repacked Solution Vector 20,00 
Iterations   
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The second equation says that if A is post multiplied by D, then solution of the system 
returns ([D]-1 [x]) and not x.  It should be possible to recover x by pre-multiplying by D 
after computation. 
 
Several tests were run using a 100 by 100 node subset of crater.dat, running both 
unpreconditioned and preconditioned sparse matrices.  Although the preconditioning 
changed the convergence characteristics of the solution, it was not for the better in this 
test.  The preconditioned matrix converged either much more slowly or not at all, with 
large errors at the corners of the map and odd errors elsewhere. 
 
Test 5. Elevation Clipping 
 
Processing of crater.dat and other files using LSQR indicated that the iterative solutions 
were characterized by elevation overshooting and undershooting.  As a result, a 
MATLAB program called clipper.m was written.  The idea was to produce an 
intermediate solution, use clipper.m to remove the overshoot and undershoot elevations,  
and then use the conditioned intermediate solution vector as an initial estimate for LSQR. 
 
The approach was tested using a 200 by 200 node subset of crater.dat.  This did not prove 
to be a success either.  The “bad” elevations persisted and kept reappearing in the 
solution vector even after they were clipped out of the intermediate solution vector.  No 
application of the clipper.m program had any useful effect. 
 
Test 6. Multiple Level Solutions 
 
During the course of attempting solutions of crater.dat using LSQR, it seemed that the 
convergence was related to the initial estimate.  Sometimes setting the initial estimate to 
the maximum elevation worked well, and with other files the minimum elevation worked 
better, depending on the nature of the particular file. 
 
What was needed to speed convergence was an initial estimate that was small where the 
solution vector was small and large where it was large.  The problem is that prior 
knowledge or prediction of the solution was needed to accomplish this.  Various ways of 
performing a single pass interpolation on the input file to produce a better initial estimate 
were considered.  The problem is that the first pass interpolation should ideally condition 
the zeros in the grid to something more closely approaching the adjacent contour 
elevations in order to speed convergence. 
 
It was considered that the (not over determined) iterative Laplacian solver described in 
Section 3 might be the ideal generator of initial estimates for LSQR.  Because the 
estimated system was not over determined, a least squares solution was not required, only 
Gauss Seidel iteration of the full rank matrix.  The iterative solver was possibly ideal for 
the application because although this solver produced a lower quality interpolation,  only 
a coarse or “good enough” solution was required for the purpose of initial estimate.    
 
The zero elevations in the input file would be interpolated relatively rapidly to values 
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close to their contour line neighbors. (With an iterative solver, initial convergence is 
rapid and the final degrees of convergence can take most of the computational time.)  
Such a solver was adapted from code written during the proposal phase of the project.  
The Java interpolation program (accessed through the InterpolationUI.java module) has a 
four nearest neighbor (Laplacian) iterative solver, a Thin Plate solver and is capable of 
matrix row reduction.  The code listings for this program are included in Appendix 2. 
 
The first test of this idea was conducted using the full (900 by 900 node) crater.dat input 
file.  This file had been “solved” using 20,000 iterations of LSQR with an initial estimate 
of a 810000 by 1 initial estimate vector of all minimum elevation values.  The result was 
a mesh plot that had a significant undershoot in the lake and small “gullies” near the 
edges where no gullies were supposed to be as described above. 
 
The fast iterative Laplacian solver running the crater.dat input file exhibited similar 
convergence problems.  (It was becoming apparent that convergence is a major concern 
with iterative solvers.)  It took 50,000 iterations to produce a reasonable initial solution as 
evidenced by inspection of the mesh plot.  However, because the iterative solver was 
relatively fast 50,000 iterations took only 1445 seconds, a tolerable amount of time. 
 
Then crater.dat was rerun using the LSQR solver with the solution vector produced by 
the fast iterative Laplacian solver as the initial estimate for LSQR.  Experiments showed 
that it took  20,000 iterations using the LSQR  solver to produce a considerably improved 
result.  The undershoot was now absent from the solution, as were the unwanted gullies.  
However the lake area was still not perfect because instead of the lake being perfectly flat 
it was “filleted” at the base of the cliff, even after adding an additional elevation node in 
the lake.   
 
The results are shown in the figures below.  The figure on the left (Figure 28) is the 
solution computed by the fast iterative Laplacian solver.  The figure on the right (Figure 
29) is the solution computed by LSQR using the solution produced by the fast iterative 
Laplacian solver as the initial estimate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 28. Laplacian crater.dat Repacked Solution Vector 
50,000 Iterations (Initial Estimate Vector). 
 

improvementsimprovements
Figure 29. LSQR crater.dat Repacked Solution Vector 
20,000 Iterations using Initial Estimate Shown In Figure 28. 
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It was apparent that crater.dat was a particularly difficult file to interpolate.  It is 
considered  that cliffs represent a special class of interpolations worthy of a study of their 
own.  At this point, sufficient technique had been developed to attempt the solution of the 
goal of this project, a reasonably well-behaved 1201 by 1201 elevation node input file. 
 
 
Solving 1201 by 1201 bountiful.dat 
 
In order to produce a suitable input file the 2100 by 2100 node instructor-supplied 
bountiful.dat file was subsetted to the target 1201 by 1201 elevation node size.  A small 
program called writeMatrix.m was written to convert the subset file into a format that 
Sparse.exe could handle. 
 
A coarse solution was run using the fast iterative Laplacian solver, the 5000 iterations 
processing in 313.312 seconds.  This solution was then used as the initial estimate for 
LSQR, running  for 500 iterations.  Because of the large size of the file (around 250MB), 
considerable memory paging was required for the first time for MATLAB’s LSQR to run 
the solution, slowing down the solution very considerably.  The 500 iterations took 
3.0433e+04 seconds (8.45 hours) to compute. 
 
A mesh plot of the repacked solution vector is shown below in Figure 30.  The maximum 
difference between the initial estimate and the LSQR solution after 500 iterations was 
18.8 feet (the elevations range from about 6800 minimum to 7800 maximum feet.)  This 
is a  considerable difference for a 20 foot contour interval file given the relatively high 
quality of the initial estimate.  However, the actual quality of the computed solution is not 
known because the input file was of course too large for solution using the direct 
MATLAB solver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 30. LSQR bountiful_subset.dat 1201 X 1201 Repacked 
Solution Vector 500 Iterations using Initial Estimate.  (Note: the 
apparent contour lines visible in the plot are an artifact of the 
MATLAB surface color interpolation and are not residuals of the 
elevation interpolation.) 
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9.0 Comparison of the Quality of Solutions and Convergence Rates of the Two-
Level Laplacian/LSQR Solver and the MATLAB Direct Solver 

 
Investigation Solution Quality 
 
It  was considered necessary to compare the quality of the two level iterative solution 
technique developed in the previous section with the solution produced by the MATLAB 
direct solver. In order to investigate this, a series of tests was conducted using square.dat.  
This file was designed specifically to be difficult to interpolate.   In order for  the 
proposed two-level technique to be useful, it should produce a very different solution 
from the initial estimate and a solution indistinguishable from that produced by 
application of the MATLAB direct solver to the same input file. 
 
The square.dat input file was interpolated by applying the iterative Laplacian solver using 
5000 iterations.  The result was a particularly ugly (tent-like) mesh plot with the expected 
drooping between the contour lines and  characteristic sharp corners.  (The Laplacian 
iterative solver is written  to “lock” the contour lines at their original values and to not let 
them change regardless of the number of iterations, thus exaggerating the bad qualities of 
the four nearest neighbor interpolation algorithm.) 
 
This intermediate solution was then imported into MATLAB and converted into an initial 
estimate vector using the MATLAB commands: 
 
transpose=intermediate’; 
x0=transpose(:); 
 
A sparseMatrix and  RHS vector ‘b’ were computed using the following MATLAB 
commands: 
 
sparseMatrix=sparseA(square); 
b=makeB(square); 
 
The system was then solved using the commands: 
 
z=LSQR(sparseMatrix, b, 10e-06, 500, [ ], [ ], x0); 
Next the control was computed: 
 
zc=LSQR(sparseMatrix, b, 10e-06, 500); 
 
Both these solutions converged to the same solution vector.  Mesh plots of the initial 
estimate vector, along with the two identical solution vectors are shown in below. 
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This test indicated that the very coarse initial estimate was iterated by LSQR to a solution 
virtually identical to that produced by the MATLAB direct solver.  There was no 
evidence in this test to indicate that the two-level solution approach was any worse than 
the direct solution (which took much more processing time and much more storage). 
 
Comparison of the Rate of Convergence of LSQR without an Initial Estimate and the 
Two-Level Laplacian/LSQR Solver with an Initial Estimate 
 
The preceding test demonstrated that the LSQR solution of square.dat converged to the 
same solution as the MATLAB direct solver.  It was next considered necessary to 
determine quantitatively the effect on LSQR convergence of using a high quality initial 
estimate (such as that produced by the fast Laplacian iterative solver) as compared to 
LSQR using the default initial estimate.   
 
The square.dat input file was again chosen as the test file.    In the first series,  MATLAB 
was used to solve the equation: 
 
z=LSQR(sparseMatrix, b, 10e-06, <iterations>); 
 
where , <iterations> was a the number of iterations requested, ranging from 10 to 90. 
 
Contour plots of the resulting mesh files are shown in the figures below.  The file at the 
upper left of Figure 34 was run for ten iterations, top center twenty iterations, etc. 
 
 
 
 
 
 
 
 
 

 
 
Figure 31.  Laplacian Solution 

 
   Figure 32. Direct Solution 

 
    Figure 33. LSQR Solution 
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Next, a second series of solutions was run, this time supplying an initial estimate.   
 
MATLAB was used to solve the equation 
 
z=LSQR(sparseMatrix, b, 10e-06, <iterations>, [ ], [ ], x0); 
 
where x0 was the initial estimate computed by the fast Laplacian solver and <iterations> 
again ranged from 10 to 90.   This series of mesh plots is shown below in the series of 
images in Figure 35. 
 
 
 
 

 

 
    
 Figure 34. LSQR Solution of square.dat: Solution Progression with Default Initial Estimate, 10-90 Iterations. 
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Examination of the convergence performance of these two test groups is interesting and 
highlights many of the convergence characteristics observed during the previous test 
using large input files.  The most important feature is the very marked improvement of 
the approximation after only ten iterations of the very coarse initial estimate (which is 
shown as the first of three figures in Section 9).  This indicates that LSQR computing the 
Franklin algorithm with a fast Laplacian initial estimate would be expected to converge 
to a well conditioned surface relatively quickly. 
 
The obvious difference between the two groups is the much more rapid early 
convergence of the second (two-level solution) group, the one that was computed by 
LSQR with the coarse Laplacian initial estimate.  The convergence after ten iterations of 
this group (the first figure at the upper left) is better than the convergence of the second 
group after seventy iterations (the figure at the lower left corner of the first group of 
figures). 
 
It is also apparent however that the difference between each successive iteration is less 
than that of the first group.  That is, the degree of improvement after each successive 
iteration decreases as the current approximation converges toward the solution vector. 
 

 

 
Figure 35. LSQR Solution of square.dat: Solution Progression with Laplacian Solver Initial Estimate, 10-90 Iterations. 
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10.0 Comparison of the Solution Vector produced by the MATLAB Direct Solver 
with  the LSQR Solution for a Large Input File 

 
The final test in this series was designed to investigate the quality of the solution vector 
produced by three solvers.  The standard was the solution vector produced by the 
MATLAB direct solver.  The first test output was the solution vector produced by LSQR 
without an initial estimate and the second test output was the two-level solver running 
LSQR and an initial estimate computed by the fast Laplacian solver. 
 
It was necessary to determine if the results observed in the tests run on square.dat would 
hold true for a larger input file.  The largest file that could be processed to completion by 
the MATLAB direct solver on the test hardware platform was about 400 by 400 elevation 
nodes.  The large bountiful.dat was subsetted to this size.  The input file was converted to 
sparse representation using sparseA.m and the RHS vector was computed using 
makeB.m.  Then the solution was computed by the MATLAB direct solver. 
 
Next,  LSQR computed a solution vector using no initial estimate and 5000 iterations. 
 
Finally, LSQR computed a solution vector using an initial estimate prepared by the 
Laplacian solver and run for 500, 1000 and 1500 iterations. 
 
Several techniques were used to determine the quality of the solution vectors.  The first 
was direct inspection of the mesh plots.  This turned out to be a difficult indicator of 
solution quality, as careful inspection of these plots was required to spot the differences.  
The mesh plots for the coarse initial estimate and the MATLAB direct solution are shown 
side by side in the figures below.  The figure on the left (Figure 36) is the coarse initial 
estimate produced by the Laplacian solver.  The figure on the right (Figure 37) is the 
control produced by MATLAB running the direct solver. 
 
Careful inspection of the Laplacian plot in Figure 36 shows pronounced scalloping at the 
edges that appear to be an artifact of the contour lines. These features are indicated by the 
arrows in the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ScallopingScalloping

 
Figure 36. Laplacian Fast Solver Solution of 
bountiful_subset.dat. 

Figure 37.  MATLAB Direct Solution of bountiful_subset.dat 
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The next two plots are the solution vectors produced by LSQR run for 500 iterations 
using the Laplacian solution as the initial estimate and LSQR run for 5000 iterations 
using no initial estimate.  The laplace/LSQR initial estimate is on the left and the LSQR 
with the default initial estimate is on the right. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note the decrease in scalloping of the initial estimate plot (Figure 38) on the left 
compared to the straight initial estimate plot in Figure 39.  However, the fast Laplacian 
result is not as smooth as the straight LSQR plot (5000 iterations) on the right. 
 
The final two plots show the result of LSQR running for 1000 iterations and 1500 
iterations using the Laplacian (fast) initial estimate.  The 1000 iteration result is on the 
left (Figure 40) and the 1500 iteration result is on the right (Figure 41).  The quality of 
the latter plot is very close to both the 5000 iteration LSQR (default initial estimate) and 
MATLAB direct solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39. LSQR Solution of bountiful.dat, 5000 Iterations 
using default initial estimate.  The scalloping is reduced due 
to the higher iteration count.  

Figure 38. LSQR Solution of bountiful_subset.dat. 500 
Iterations with Laplacian Initial Estimate.  Note the edge 
scalloping where indicated. 

Figure 40. LSQR Solution of bountiful.dat, 1000 Iterations 
using Laplacian initial estimate.   
 

Figure 41. LSQR Solution of bountiful.dat, 1500 Iterations 
using Laplacian initial estimate.  
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In order to compare the solutions more carefully, it is useful to compute difference 
matrices.  The plot in Figure 42 is the difference matrix produced by subtracting the 
MATLAB direct solution  from the default LSQR (5000 iterations).  The plot in Figure 
43 is the difference between the direct MATLAB solution and the LSQR/laplacian 1500 
iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The plots show that the 1500 iteration (with initial estimate) plot is slightly better overall 
than the corresponding 5000 iteration LSQR without the initial estimate.  The areas of 
localized divergence in the two difference plots are characteristic signatures of iterated 
solutions with insufficient iterations.   
 
Next, an LSQR computation with an initial estimate was run for 3000 LSQR iterations.  
The difference plot (using the MATLAB direct solution as a standard) is shown in the 
Figure 44 below.  It shows that the LSQR computation run for 3000 iterations using an 
initial estimate far exceeds the quality of the LSQR computation run for 5000 iterations 
without the initial estimate (see figure above).  The maximum deviation from the direct 
solution is –0.2 feet.  Although convergence is not complete, agreement with the direct 
solution is very good and far better than the same LSQR computation without  the initial 
estimate.  This is consistent with all earlier observations that indicate the advantage of 
more rapid convergence of the LSQR solution when it is supplied with a coarse but high 
quality initial estimate. 
 
 
 

 
Figure 42. LSQR Solution of bountiful.dat, 5000 Iterations using 
default initial estimate.  MATLAB contourf Plot of difference 
matrix. 
 

Figure 43. LSQR Solution of bountiful.dat, 1500 Iterations 
using Laplacian initial estimate.  MATLAB contourf Plot of 
difference matrix. 
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A final test was conducted to determine if LSQR would converge to the same solution as 
the MATLAB direct solver if run for sufficient iterations.  In this test LSQR without an 
initial estimate was run for 10,000 iterations.  At the end of the run, the maximum 
deviation from the direct solution was –1.076e-004 feet, indicating that excellent 
agreement with the direct solution ultimately. 
 
Although computation times were not reported in this section, the cost of the Laplacian 
iterative computation for 5000 iterations was negligible: 59 seconds of CPU time.  The 
cost of the 2000 LSQR iterations was about one hour of CPU time on the test hardware 
platform. 
 
The series of tests described in this section indicate the following: 
 
1) Large elevation grids containing cliffs ending in lakes are difficult to interpolate.  If 
the tuckermans.dat file had been 1201 by 1201 nodes it might have been impossible to 
process on the test computer due to the large number of refinement iterations required.  
Additional techniques are probably required to handle the special case of cliffs. 
 
2) The technique developed in this report allows solution of the target 1201 by 1201 
system, albeit after eight hours of processing time.  Upgrading memory from 256MB to 
512MB would probably improve this performance considerably, as extensive memory 
paging was required to handle the large problem.  This memory paging was absent during 
solution of the 900 by 900 node crater.dat file. 
 
3) The fast iterative Laplacian solver seems to be a useful tool for preparation of initial 

Figure 44. LSQR Solution of bountiful.dat, 3000 Iterations using 
Laplacian initial estimate.  MATLAB contourf Plot of difference matrix. 
 



 
 

 
 

52

estimates for LSQR solving the Franklin algorithm.  It seems clear that using LSQR 
running the Franklin algorithm with no initial estimate is a waste of computational effort.   
A less elegant but much faster algorithm can do the initial  part of the computation just as 
well as the better but slower Franklin algorithm solved by LSQR.  The Franklin 
algorithm can then be used to finish the computation, producing a result as good as if no 
initial estimate had been supplied to LSQR running a greater number of iterations.  This 
solution was also as good as the direct solution in all cases studied. 
 
5) Two fundamental problems with iterative solvers present obstacles to the technique 
developed in this report for solving the Franklin interpolation algorithm: the slow spread 
of updated information across the solution vector in general and a slowing of the spread 
of updated information as the current iteration approaches the ultimate solution vector. 
 
This  can mean that although a tremendous computational time savings results in using a 
fast solver to generate an initial estimate, the final fractional improvements can still take 
a great deal of time (i.e. the final 5% of the solution takes 95% of the time.)  An added 
problem is that it is not clear when the ultimate solution has been achieved, as statistics 
like relative residual are not very useful for this application.  Nor is the quality of the 
solution (that is the difference between the present iteration and the correct answer) 
readily available. 
 
6) Follow up tests using the small test file square.dat seem to validate the two-level 
solution method proposed.   
 
7) Tests showed that an LSQR system that was supplied the initial estimate converged to 
a solution closely approximating the MATLAB direct solution vector much more quickly 
than a similar LSQR system using the default initial estimate. 
 
8) Comparison of the MATLAB direct solver, LSQR without an initial estimate, and 
LSQR with an initial estimate supplied by the fast Laplacian solver showed that the 
LSQR solution agreed well with the direct solution, the agreement dependent on the 
number of iterations run.  Supplying a good initial estimate increased convergence 
significantly, decreasing the number of iterations to achieve a given degree of 
convergence by about half.   
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11.0 Comparison of the Franklin Algorithm with the Able Software R2V Native 
Interpolation Algorithm 

 
Although it was known that the Franklin approximation algorithm produced better results 
than theoretical alternatives, it was not known how this algorithm would compare to 
those implemented in commercial software packages.  The details of such algorithms are 
generally not publicized. 
 
The commercial package R2V from Able Software, Inc. is a multipurpose application 
capable of all of the operations described in Section 1 necessary to convert a raster 
contour line map to a DEM.  A demonstration version of this software is available for 
free download.   Export files are limited to 256 by 256 elevation nodes but this restriction 
did not pose an obstacle as a large input file was not needed in order to compare the 
quality of the surfaces generated.  
 
The first test compared the ability of R2V to handle the interpolation of the difficult 
square.dat input file with the Franklin approximation algorithm solved using the two-
level technique developed as part of this project.  R2V is a commercial software package 
that runs on the Windows OS.  The application costs around $1495 at the time of this 
writing.  One of the main applications is the extraction of digital elevation models 
(DEMs) from contour maps.  In order to accomplish this, R2V reads a contour map (for 
example a USGS topo map contour layer) as a TIF file.  The program automatically 
vectorizes the raster contours using a line following vectorization method [2].  The 
operator is then required to manually or semi-manually edit the vectors and then tag them 
with their elevation values.  When this is complete,  the application performs a vector to 
raster conversion using the elevation vector attributes to create a raster elevation input 
file.  Finally the program interpolates the elevation input file to a raster DEM. 
 
In order to test R2V,  square.dat (which is a simple ASCII text file) had to be converted 
into a corresponding TIF file that R2V could import.  In order to do this, the student-
supplied C++ program ‘ascii2tga’ which converts such a text file to TGA format was 
used.   (TGA was chosen as an intermediate graphic format because the student already 
possessed a TGA writer that was modified to read a plain ASCII file instead of the USGS 
DEM format that it was originally written to convert.)  This program is attached in 
Appendix 3.  The square.dat file was slightly modified such that the elevation values 
were scaled to span the 8-bit grayscale color space and a border of zero padding 
elevations were added to solve an R2V clipping problem.  The result was a 50 by 50 
elevation node input file. 
 
After suitable image processing in the image processing application Paintshop Pro 
(principally binarization) the file was imported into R2V, vectorized, tagged, and 
interpolated. 
 
As a means of comparison, the same input file was interpolated using the Franklin 
approximation algorithm and the solution technique described in previous reports.  The 
results of these efforts are shown in the following two figures.  Figure 45 shows  the R2V 
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interpolation and the one on the right (Figure 45) is the Franklin approximation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The differences are striking.  R2V was not able to handle square.dat appropriately.  A 
very poor (distorted) surface resulted, the appearance suggestive of an iterative 
interpolation  used without sufficient iterations. On the other hand, the Franklin method 
handled the interpolation  as expected, producing the usual smooth surface. 
 
Test 2. Comparison of R2V and the Franklin Algorithm  Solving tuckermans_subset.dat 
 
A less severe a test was prepared from tuckermans_subset.dat.  This was also a 50 by 50 
elevation node input file representative of a more “normal” terrain.  A TGA file was 
prepared using ascii2tga.exe as before and imported into R2V.  The same sequence of 
vectorization, elevation tagging and interpolation described above was again used. 
 
The results of this interpolation are shown in the following two figures.  Figure 47 shows 
the R2V interpolation and Figure 48 on the right is the Franklin interpolation of the same 
input file. 
 
 
 
 
 
 
 
 
 

 
Figure 45. R2V Solution of square.dat 
 

Figure 46. LSQR Solution of square.dat using Laplacian 
initial estimate.  
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This time R2V did a little better, at least producing a surface.  However, it is obviously 
deeply terraced.  Alternatively, the Franklin algorithm has yielded a much smoother 
surface with little or no terracing. 
 
This commercial comparison test indicated the following: 
 
1) The commercial program R2V from Able software produced results inferior to those 
produced by the Franklin algorithm using the two-level solution method developed 
during the course of this project.  The algorithm used by R2V probably employs no better 
than a Laplacian (nearest four neighbor) interpolation algorithm.  The results from the 
square.dat test indicate that the implementation of even this inferior algorithm is flawed, 
because the result of the R2V interpolation attempt was a very badly distorted surface 
that did not resemble the expected surface very much at all. 
 
2) It is likely that the Franklin algorithm would out-perform the R2V algorithm in almost 
every interpolation application. 
 
3) An interesting artifact of Franklin algorithm and of interpolation algorithms in general 
was discovered during this investigation.  The initial approach to creation of an input file  
was to simply draw elevation contours using the well known graphic application 
Paintshop Pro and then inport them into R2V and into the Laplacian interpolator as TIF 
and GIF files, respectively.  In order to produce the base map for LSQR,  the Laplacian 
solver was run for zero iterations.  This resulted in a contour map with the contours 
commonly four or five elevation values thick. 
 
The Franklin algorithm had trouble with this base contour map, typically converging to a 
much more terraced result than if the contour lines were only one elevation value thick. 

 
 
Figure 47. R2V Solution of bountiful_subset.dat. 
 

 
 
 
Figure 48. LSQR Solution of bountiful_subset.dat  using 
Laplacian initial estimate. 
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Investigation indicated that this is a well-known problem with all interpolation algorithms 
multiple pixel line widths cause additional equations of the form: 
 
 
zi = ci 
 
to be  generated and added to the coefficient matrix.  This was equivalent to creation of a 
small terrace or plateau.  The sensitivity of the algorithm to this effect must be kept in 
mind when preparing input files and may be a good subject for further investigation. 
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12.0 Examination of the CatchmentSIM-GIS 8-32 Ray Interpolation Algorithm 
  
CatchmentSIM-GIS is a topographic parameterization and hydrologic analysis tool 
available for free download at www.uow.edu.au~cjf03/index.htm.  The program 
incorporates a contour line to DEM interpolation algorithm. 
 

The interpolation algorithm is based on a distance weighted average of a series of linear 
interpolations along a set number of cross-sections taken through a single elevation node. 
For example, a 180 degree arc may be divided into 8 increments by the algorithm.   
Interpolation rays are then initiated at the appropriate angles, and all rays are paired with 
a mirror ray which travels in the opposite direction.  Once an interpolation ray and its 
corresponding mirror ray both intersect pixels with assigned elevations, linear 
interpolation is applied to determine the pixel elevation for that particular interpolation 
and mirror ray combination.  

The final value for the pixel is based on a weighted average of all the cross-section 
interpolations. The basis for weighting each derived elevation  is the distance between the 
intersected pixels that form each end of the cross-section relative to the total distance of 
all 16 cross-sections. The program allows the user to designate the number of 
interpolation rays (and mirror rays) that are used to interpolate the pixel elevation.  The 
algorithm is shown schematically in Figure 49. 

 

 

 

 

 

 

 

The intent was to conduct the same tests used in the previous section in order to compare 
the results of this algorithm with the Franklin algorithm.  Unfortunately, this application 
was discovered too late in the course of the project to accomplish this. 

The problem was that CatchmentSIM required a MapInfo Interchange File (MIF) format 
for its input elevation file, which actually required a MID/MIF file pair.  Although the 
MIF file format specification was obtained,  the student was not able to understand it well 
enough to create test CatchmentSIM input files in time to include the test in this project. 

As an alternative,  the test contour line file included with the application was interpolated 
and the results of the interpolation were examined in as much detail as possible for 
quality of interpolation.  Besides being unable to run square.dat or to compare the result 
directly with the Franklin algorithm, the comparison was hampered by the limited 

 
Figure 49. CachmentSIM Interpolation 
Algorithm (graphic: CachmentSIM-GIS) 
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rendering capabilities of CatchmentSIM.  CatchmentSIM is only capable of rendering the 
DEM using a 2D contour plot, which experience has shown to be an inadequate indicator 
of terrain surface quality.  However, sufficient indicators of interpolation quality could be 
obtained or inferred from analysis of the rendered results to make the analysis worthwhile 
and revealing. 

The figure on the left (Figure 50) shows the 700 by 1000 pixel test input elevation 
contour plot.  The MIF file from which this was derived consists of one polyline object 
for each contour line.  Each polyline object has an elevation value listed in the MID file 
indexed to the contour lines. 

The figure on the right (Figure 51) shows a 2D contour plot of the interpolated DEM 
using 8 rays per elevation node. 

 

 

 

 

 

 

 

 

 

 

Although CachmentSIM does not have 3D rendering capability, it was possible to infer 
some information about the quality of the terrain surface by dragging the cursor across 
the map and inspecting the current pixel elevations reported on the screen.  This analysis 
indicated that CachmentSIM did a very good job avoiding terracing.  Elevations 
increased smoothly up or down the fall line with no drooping between contour lines 
apparent in any part of the map tested. 

CachmentSIM did not do as well in any area where the contours were enclosed or almost 
enclosed.  Enclosed contours (for example at the tops of hills) were interpolated to a 
constant elevation (plateau) as were many valley areas.  CachmentSIM has a utility for 
finding flat areas and another one for fixing them.  Figure 52 shows a section of the DEM 
where the flats have been detected.  The solid black areas of the map are plateaus. 

 

 

Figure 50. Contour Line Input Plot Figure 51.  CachmentSIM Interpolated DEM with 
Superimposed Contour Lines 



 
 

 
 

59

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is apparent that the interpolation algorithm used by CachmentSIM is very good at 
producing terrace-free slopes and is also very fast to compute.  However, it suffers from 
plateaus as a result of its algorithm.  The algorithm also produces small pits that seem to 
be distributed randomly across the map.  The reason for these pits is not known, but is 
apparently an artifact of the interpolation algorithm used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 52.  DEM Detail  Showing Flat Areas (in black) and pits. 
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13.0 Analysis of the Results 
 
Any success that this project achieved is a result of the early decision to abandon refined 
direct solution techniques in favor of an iterative solution approach.  Although significant 
improvements in computational time were achieved by more optimal matrix reordering, 
these improvements were judged insufficient to accomplish the objective.   
 
It is possible that this decision was hasty, as the reordering tests examined the 
improvements in computational time rather than improvements in storage requirements as 
a result of reduced fill-in.  (Although computational times for direct solution of the 
Franklin algorithm are lengthy, the real problem is excessive storage requirements.)  
However, these tests would have been quite time consuming.  Progressive computations 
increasing the size of test input files until out of memory errors caused failure would be 
required.  It was assumed that the modest success in decreasing computational time 
would have been accompanied by similarly modest improvements in storage 
requirements. 
 
The decision to investigate iterative solvers was influenced by prototyping work that was 
done during the proposal phase of the project, when the simple Laplacian iterative Java 
code was written.  Iterative solvers can better exploit the matrix structure characteristic of 
the Franklin formulation, which can result in more compact data storage requirements.  
As a result they can address the main obstacle that prevented the solution of large input 
files using the Franklin algorithm: out-of-memory processing errors due to the large size 
of  in-process data arrays. 
 
As discussed in Section 2, direct solvers are presented with an approximately  N2 by N2  
matrix whereby each matrix row corresponds to the stencil equation of an elevation node 
with one stencil equation for each elevation node in the input file.  The direct solver 
cannot attack this data structure directly because of its large size.  Its optimization 
strategy is limited to transformation of the full matrix to (indexed) sparse matrix 
representation.  This is in fact essential as the full N2 by N2 matrix for a 1201 by 1201 
input grid exceeds 2.08e+12 data elements and cannot possibly be handled by any solver 
directly.  It is only by indexing the relatively few non-zero coefficients that the system 
can be handled by the solver.  This still results in a very large data structure for a desktop 
environment. (The ASCII index array for the 1201 by 1201 node input file exceeded 
250MB in size.) 
 
When this efficiency is exploited, the direct solver has little more to say about data 
structure.  Its only remaining strategy is defensive: an educated guess to reorder the 
sparse matrix to (hopefully) prevent storage requirements from exploding to a hopelessly 
unmanageable size due to fill-in during computation.  As discussed in Section 4, this 
must be done heuristically as the computation of the optimal ordering is NP-hard, and the 
development of useful heuristics is still an area of active research.   
 
In particular, the MATLAB’s direct linear least square attempts to solve the system 
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ATAz=AT b 
 
by Q-less QR factorization as described in Section 3.  The factorization ultimately 
requires row reduction, which probably causes excessive fill-in and leads ultimately to 
the out-of-memory computational failures observed for input grids larger than 400 by 400 
nodes on the test hardware platform.  This occurs despite MATLAB’s native reordering 
scheme.  As indicated in Section 4, computation time can be reduced by about 35% but 
the underlying problem probably cannot be eliminated or even managed to the degree 
necessary to solve the target problem. 
 
The LSQR solver is also presented with the N2 by N2 sparse matrix as its input.  
However, an iterative solver solves systems of the general form 
 

Mx(k+1)=Nxk  + b 
 
and as a result can define its computations in terms of matrix multiplications instead of 
row reductions.  Thus fill-in does not occur and the memory use does not grow 
explosively due to in-process storage requirements. 
 
Moreover, iterative solvers have more to say about data structure and are often able to 
exploit the coefficient matrix structure much more effectively than a direct solver.  For 
example, the non-native MATLAB (i.e. C, FORTRAN and Saunders-defined LSQR.m) 
LSQR implementations do not require and in fact will not even accept a coefficient 
matrix as an argument directly.  Instead, they require that the user define the function y = 
aprod(mode, m, n, x, iw, rw) were, depending on the value of ‘mode’ returns the either 
the vector y = Ax or y = A’x.  In cases where the coefficient matrix is highly structured, 
this product can be defined in terms of a rule rather than an explicit matrix multiplication, 
precluding storing the coefficient matrix at all (see Saunders program lsqr.m and aprod.m 
user notes for an example of such a matrix). 
 
The simple Laplacian solver used to generate the initial estimate for LSQR represents an 
even more efficient implementation.  It does not even formulate the sparse matrix but 
instead formulates the equations that would have appeared in each row of the sparse 
matrix using a stencil equation that relates the next value of a given elevation to the 
current value of its four nearest neighbors.  This can be done because the stencil is the 
same for each node and can therefore be expressed in terms of indices rather than 
explicitly.  Because it is a Gauss-Seidel iterative solver it does not even need a temporary 
data structure but instead simply updates the input elevation grid with each successive 
calculation.  As a result of this scheme, its data storage requirements are O(N2) and it is 
very fast. 
 
It may in fact be possible to apply this very efficient approach to the over determined 
system as well, as both A and AT have only two types of equations: the five element 
nearest neighbor stencil and the one element known elevation stencil.  Writing a least 
squares solver to exploit this structure would preclude LSQR completely and could result 
in a very fast and straightforward computation of the Franklin algorithm. 
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Despite these considerable advantages, there are important problems exhibited by 
iterative solvers, several of which were encountered in this study.  The first problem is 
convergence.  Although iterative solvers hopefully converge to the correct solution (for 
example the solution vector produced by the direct solver) this is not guaranteed.   
 
This could arguably be overlooked if the class of systems being solved was well 
understood and known to converge to  the correct solution in many cases.  Even if this 
was accepted, the second major problem associated with iterative solvers would still 
exist.  That is, even if the iterative solver converges to the correct solution, it can not be 
known how close a given iteration solution vector is to the correct solution vector without 
knowledge of the correct solution ahead of time.  This is obviously unavailable. 
 
Conventional statistics such as residuals are of little use for terrain interpolations.  This is 
because, as the solution approaches convergence, many of the computed elevation values 
may be nearly correct but the terrain may be very incorrect locally.  This occurred in 
processing crater.dat (see Section 8).  Another example occurred in the Section 10 
analysis. 
 
Another method commonly used to test for convergence is to compute an overall change 
statistic between successive iterations. The  idea is, when there is insignificant change 
between the successive iterations, the computation is complete. 
 
However, this can fail for the same reason.  Since the solution may only be incorrect 
locally, even large local changes may be “washed out” when aggregated with the vast 
majority of unchanging elevation values. 
 
There are other interfering factors.  Information typically propagates very slowly across 
the solution vector as the iteration number increases.  A well known characteristic[9] of 
iterative solvers is their tendency to “stall out” far from convergence after the high 
frequency components of the solution vector are removed. 
 
As a result, although the solution of input files of the target size is demonstrably possible, 
the techniques developed during this project fall somewhat short of a fully practical 
method.  For example, although the solution of a 1201 by 1201 node bountiful.dat subset 
was demonstrated, it is not known how close that solution is to the correct solution.  
Prospective users of the technique are left with the following choices to judge solution 
quality: 
 
1) Use qualitative methods such as examining the solution vector for characteristic or 
signature features indicating non-convergence (scalloping along the edges of the solution 
plot, suspicious mounds or sinks where none are expected based on inspection of the 
contours, etc.); 
 
2)  Comparison of run statistics to those of similar known solutions (that is, if a particular 
combination of coarse solver and fine solver iterations worked well for a previous input 
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grid, the same combination might work well for a new similar elevation grid); 
 
3)   “Bombing” the problem by running a huge number of iterations judged (again based 
on experience) to vastly exceed the number required for the degree of convergence 
desired.  This is practical as long as the cost of particularly the fine solver iterations is not 
too great. 
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14.0 Conclusions 
 
It is considered that the main objective of this project, the development of a method to 
compute the Franklin approximation for DEMs as large as 1201 by 1201 elevation nodes, 
using an unsophisticated desktop computer, was technically accomplished.  Prior to 
starting this work, Dr. Franklin demonstrated the inability of the MATLAB direct solver, 
running on a laptop computer with 1024MB RAM to process an (over determined) 800 
by 800 elevation node system (crater.dat) to completion.   
 
The method developed as a result of this project, the two-level iterative computation, has 
been demonstrated to compute input files of 800 by 800, 900 by 900, and 1201 by 1201 
elevation nodes to completion.  The test hardware platform with 256MB RAM was only 
marginally adequate for the 1201 by 1201 input file.  However, it is considered likely that 
a similar desktop platform with 512MB RAM would easily handle the 1201 by 1201 
input file and also significantly larger files.  This memory requirement to quickly 
compute the target input file size is not unreasonable considering the ever decreasing cost 
of RAM. 
 
Follow up studies have demonstrated that the quality of the solution vector for small 
problems is identical to that produced by direct solution of the system of equations.  A 
further study demonstrated the general effectiveness of the method used to speed 
convergence, i.e. the generation of a coarse initial estimate using a fast solver running a 
low-quality algorithm, again for small problems. 
 
A third study using a larger (400 by 400 elevation node) input file confirmed the general 
findings of the studies of smaller files.  This analysis confirmed the utility of the LSQR 
iterative solver and the benefit in terms of convergence improvement of computing an 
initial estimate using a fast solver. 
 
A final study demonstrated that the Franklin algorithm is markedly superior to an 
interpolative algorithm offered by a commercial DEM extraction software package that is 
considered a leading product in its field.  This study also indicated the superiority of the 
DEM surfaces computed by the Franklin algorithm as compared to surfaces computed by 
the hydrologic application CachmentSIM-GIS.  Although the interpolation algorithm 
used in CachmentSIM is clearly superior to that used in R2V, it is inferior to the Franklin 
algorithm in its interpretation of hilltops and valleys. 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

65

15.0 Future Work 
 
Several areas for future work are suggested by this study. 
 
1) The development of better methods to estimate the degree of convergence, as 
discussed above.  These would ideally take into account the localized nature of errors and 
other convergence characteristics unique or common to iteratively interpolating terrains. 
 
2) Porting of the program to a C or FORTRAN implementation of LSQR would probably 
result in faster computational times and thus reduce the cost of LSQR iterative passes.  
Lowering the cost of iterative passes makes accurate techniques for the estimation of 
convergence less critical, as simply running excessive numbers of iterations would be 
cheap. 
 
3) Ultimately, an integrated solver incorporating the Laplacian routines for preparation of 
the initial estimate, the LSQR solver, and methods for estimating the quality of the 
solution would possibly yield a very useful software product. 
 
4) Development of techniques for handling special cases, such as cliffs would result in 
the most broadly applicable implementation of the Franklin algorithm. 
 
5) Writing a specialized least squares solver that exploits the structure inherent in the 
problem as discussed in Section 12 is probably the most interesting area for future 
investigation of all.  If this could be done, much of the other future work identified would 
be unnecessary.  The cost of each computational iteration would be so small such that 
convergence issues would be largely irrelevant, since excessive iterations could be run 
much more cheaply even for large problems. 
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Appendix 1  MATLAB Developmental Code Modules 

 
function sparseMatrix = sparseA(inputMatrix) 
% 
%   inputMatrix: rectangular input matrix 
%   returns: sparse banded matrix sparseMatrix 
%   of size M+K by M 
%   where M is m X n 
%   and K is k by 1. 
% 
%   where k is the number of non-zero 
%   (known elevation) input array elements. 
% 
%   The expanded and awkward code 
%   is designed to preserve the symmetry 
%   of the mapping from the input matrix 
%   'inputMatrix' to the output matrix 
%   'sparseMatrix.' 
% 
%   The mapping is a little tricky and  
%   writing it this way helps me to keep 
%   the bookkeeping straight. 
 
SIZE=size(inputMatrix); 
rows=SIZE(1,1); 
columns=SIZE(1,2); 
sparseMatrix=spalloc(rows*columns, rows*columns, 5*rows*columns); 
sparseRows=0;    
 
%------------------------------------------------ 
%   The first section of the code sets up the 
%   (mxn) by (mxn) upper block of the sparseMatrix.   
%   This is 
%   the section corresponding to equations of the 
%   form: Zl + Zr + Zu + Zd - 4Zi.  Most of the 
%   code is for handling the edge nodes. 
%------------------------------------------------ 
%handles the upper left node 
 
for i=1:1 
    for j=1:1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*rows + j); 
        rightColumn=keyColumn+1; 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-2; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end  
 
%------------------------------------------------ 
%handles the upper right node 
for i=1:1 
    for j=columns:columns 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*rows + j); 
        leftColumn=keyColumn-1; 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-2; 
        sparseMatrix(sparseRows, leftColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end  
 
%------------------------------------------------ 
%handles the lower left node 
 
for i=rows:rows 
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    for j=1:1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j); 
        rightColumn=keyColumn+1; 
        upperColumn=((i-2)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-2; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, upperColumn)=1; 
    end  
end  
 
%------------------------------------------------ 
%handles the lower right node 
 
for i=rows:rows 
    for j=columns:columns 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j);% 
        leftColumn=keyColumn-1; 
        upperColumn=((i-2)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-2; 
        sparseMatrix(sparseRows, leftColumn)=1; 
         
        sparseMatrix(sparseRows, upperColumn)=1; 
          
    end  
end  
 
%------------------------------------------------ 
%handles the left boundary 
 
for i=2:rows-1 
    for j=1:1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j); 
        rightColumn=keyColumn+1; 
        upperColumn=((i-2)*columns + j); 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-3; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, upperColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end  
 
%------------------------------------------------ 
%handles the right boundary 
 
for i=2:rows-1 
    for j=columns:columns 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j); 
        leftColumn=keyColumn-1; 
        upperColumn=((i-2)*columns + j); 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-3; 
        sparseMatrix(sparseRows, leftColumn)=1; 
        sparseMatrix(sparseRows, upperColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end  
 
 
%------------------------------------------------ 
%handles the upper boundary 
 
for i=1:1 
    for j=2:columns-1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*rows + j); 
        leftColumn=keyColumn-1; 
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        rightColumn=keyColumn+1; 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-3; 
        sparseMatrix(sparseRows, leftColumn)=1; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end 
 
%------------------------------------------------ 
%handles the lower boundary 
 
for i=rows:rows 
    for j=2:columns-1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j); 
        leftColumn=keyColumn-1; 
        rightColumn=keyColumn+1; 
        upperColumn=((i-2)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-3; 
        sparseMatrix(sparseRows, leftColumn)=1; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, upperColumn)=1; 
    end  
end  
 
%------------------------------------------------ 
%handles the inside nodes 
 
for i=2:rows-1 
    for j=2:columns-1 
        sparseRows=sparseRows+1; 
        keyColumn=((i-1)*columns + j); 
        leftColumn=keyColumn-1; 
        rightColumn=keyColumn+1; 
        upperColumn=((i-2)*columns + j); 
        lowerColumn=((i)*columns + j); 
        sparseMatrix(sparseRows, keyColumn)=-4; 
        sparseMatrix(sparseRows, leftColumn)=1; 
        sparseMatrix(sparseRows, rightColumn)=1; 
        sparseMatrix(sparseRows, upperColumn)=1; 
        sparseMatrix(sparseRows, lowerColumn)=1;    
    end  
end  
    
%------------------------------------------------ 
%   The next section of the code sets up the 
%   mxk lower block of the sparseMatrix.  This is 
%   the zection corresponding to equations of the 
%   form: Zi = ei. 
%------------------------------------------------ 
%concatenates the K matrix 
 
for i=1:rows 
    for j=1:columns 
        if inputMatrix(i,j) ~= 0.0 
            sparseRows=sparseRows+1; 
            sparseMatrix(sparseRows,:)=0; 
            keyColumn=((i-1)*columns + j); 
            sparseMatrix(sparseRows, keyColumn)=1; 
        end 
    end 
end 
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function bVector = makeB(inputMatrix) 
%   inputMatrix: input matrix 
%   returns: constraint vector bVector 
%   of size mxn+K X 1 
%    
%   K is the number of non-zero 
%   (known elevation) input array elements. 
 
SIZE=size(inputMatrix); 
rows=SIZE(1,1); 
columns=SIZE(1,2); 
bVector=zeros(rows*columns,1); 
sparseRows=rows*columns;    
   
%------------------------------------------------ 
%Makes the 'b' vector from the known elevations 
for i=1:rows 
    for j=1:columns 
        if inputMatrix(i,j) ~= 0.0 
            sparseRows=sparseRows+1; 
            bVector(sparseRows)=inputMatrix(i,j); 
        end 
    end 
end 
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function solutionMap = repack(inputVector, rows, columns) 
%   inputVector: NX1 input vector 
%   returns: NXN output matrix 
% 
%   This function maps the M+KX1 solution 
%   vector resulting from solving the 
%   M+K X N sparse matrix equations. 
%    
% 
%   Note: input rows, columns where 
%   rows = sparseMatrix precurser matrix rows; 
%   columns = sparseMatrix precurser matrix columns 
 
index=1; 
  
%------------------------------------------------ 
%Repacks the inputVector and builds the solutionMap 
for i=1:rows 
    for j=1:columns 
        solutionMap(i,j)=inputVector(index,1); 
        index=index+1; 
    end 
end 
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function writeMatrix(rows, columns, inputMatrix, fileName) 
%    
% rows - the number of rows of the inputMatrix 
% columns - the number of columns of the inputMatrix 
% inputMatrix - the input matrix to be written to file. 
% fileName - a string file name, with suffix 
   
%------------------------------------------------ 
% open the output stream and write data to file. 
fid=fopen(fileName, 'w'); 
for i=1:rows 
   for j=1:columns 
       fprintf(fid, '%s', ' '); 
       fprintf(fid, '%d', inputMatrix(i,j)); 
   end 
   fprintf(fid, '\n'); 
end 
fclose(fid); 
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function metisGraph = makeGraph(sparseMatrix) 
% 
%   sparseMatrix: square input matrix 
%   returns: METIS formatted graph matrix 
%   of size sparseMatrixRows+1 by 13 
%   where sparseMatrixRows is the number of nonzero  
%   sparseMatrix elements 
%   Note: use with squareSparseA.m to produce square sparse 
%   matrix only. 
 
 
%------------------------------------------------ 
%   Compute some necessary parameters. 
%------------------------------------------------ 
 
[sparseMatrixRows, sparseMatrixColumns]=size(sparseMatrix); 
metisGraphRows=sparseMatrixRows; 
metisGraphColumns=10; 
metisGraph=zeros(metisGraphRows, metisGraphColumns); 
numberEdges=0; 
 
%------------------------------------------------ 
%   This section creates a sparse symmetric analog 
%   to sparseMatrix with zeros on the diagonals. 
%------------------------------------------------ 
 
onesMatrix=spones(sparseMatrix); 
diagonalMatrix=diag(diag(onesMatrix)); 
zeroDiagonalMatrix=((-1*diagonalMatrix) + onesMatrix);   
[iZeroIndex, jZeroIndex]=find(zeroDiagonalMatrix); 
 
%disp('zeroDiagonalMatrix is:  ') 
%disp(zeroDiagonalMatrix) 
 
for k=1:nnz(zeroDiagonalMatrix) 
    zeroDiagonalMatrix(jZeroIndex(k), iZeroIndex(k))=zeroDiagonalMatrix(iZeroIndex(k), 
jZeroIndex(k)); 
  %  disp(zeroDiagonalMatrix(jZeroIndex(k), iZeroIndex(k))) 
  %  disp(jZeroIndex(k)) 
  %  disp(iZeroIndex(k)) 
  %  disp(zeroDiagonalMatrix(iZeroIndex(k), jZeroIndex(k))) 
  %  disp('  ') 
end 
nonzeroElements=nnz(zeroDiagonalMatrix); 
numberVertices=nonzeroElements/2; 
[iZeroIndex, jZeroIndex]=find(zeroDiagonalMatrix); 
 
%disp('zeroDiagonalMatrix is:  ') 
%disp(full(zeroDiagonalMatrix)) 
 
%------------------------------------------------ 
%   This section builds the METIS graph matrix 
%   from the MATLAB (modified)sparse matrix  
%   representation. 
%------------------------------------------------ 
 
for i=1:sparseMatrixRows 
    counter=1; 
    for j=1: nonzeroElements 
        if iZeroIndex(j)==i  
            metisGraph(i, counter)=jZeroIndex(j); 
            counter=counter+1; 
            metisGraph(i, counter)=zeroDiagonalMatrix(iZeroIndex(j), jZeroIndex(j)); 
            counter=counter+1; 
            numberEdges=numberEdges+1; 
        end 
    end 
end  
 
%------------------------------------------------ 
%   This section builds the header for the METIS 
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%   file and concatenates it onto the first row. 
%------------------------------------------------ 
 
numberEdges=numberEdges/2; 
[metisGraphRows, metisGraphColumns]=size(metisGraph); 
numberNodes=metisGraphRows; 
header=zeros(1,metisGraphColumns); 
header(1,1)=numberNodes; 
header(1,2)=numberEdges; 
header(1,3)=1; 
metisGraph = cat(1,header,metisGraph); 
disp('number of nodes is'); disp(numberNodes) 
disp('number of vertices is'); disp(numberVertices) 
dlmwrite('outfile.graph', metisGraph, '\t'); 
 
end 
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function sparseMatrix = scale(sparseMatrix) 
%   inputMatrix: a m by n sparse matrix 
%   returns: a normalized sparse matrix 
%   of size m by n 
%    
 
SIZE=size(sparseMatrix); 
columns=SIZE(1,2); 
   
%------------------------------------------------ 
%Divide each column by its 2-norm. 
for i=1:columns 
    normalized=(1/norm(sparseMatrix(:,i))); 
    sparseMatrix(:,i)=(sparseMatrix(:,i)) * normalized; 
end 
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function c = clipper(sparseMatrix, b, x0, iterations, cycles, grid_size, zmin, zmax) 
%   sparseMatrix: m by n sparse matrix 
%   b: n by 1 RHS vector 
%   x0 m by 1 initial guess vector 
%   iterations: number of iterations per cycle 
%   cycles: number of cycles to run. 
%   grid_size: the size of the elevation grid 
%   zmin: minimum elevation 
% 
%    
 
SIZE=size(sparseMatrix); 
rows=SIZE(1,1); 
columns=SIZE(1,2); 
 
   
%------------------------------------------------ 
%Run LSQR through 'iterations' iterations. 
%Then stop and remove any elevation excursions. 
%Resume and repeat for 'cycle' computations. 
 
for i=1:cycles 
    %z=LSQR(sparseMatrix, b, 10e-06, iterations, [], [], x0); 
    %x0=z; 
    for j=1:columns 
        if x0(j, 1) < zmin 
           x0(j,1)=zmin; 
        end 
        if x0(j, 1) > zmax 
            x0(j,1)=zmax; 
        end  
    end 
    z=LSQR(sparseMatrix, b, 10e-06, iterations, [], [], x0); 
    x0=z; 
end 
c=repack(z, grid_size, grid_size); 
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Appendix 2  Java Code Modules 
 
/* 
 * InputMatrix Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6980 
 * Instructor:  William Randolph Franklin 
 * Date:      January 26, 2003 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * Create a test input matrix for Matlab 
 * 
 *************************************************************************/ 
 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
 
public class InputMatrix extends JFrame  
{ 
 
 private JTextField text1; 
 private JTextField text2; 
 private JTextField text3; 
 private String s=""; 
 private String rows=null; 
 private String columns=null; 
 private String outputFileBuffer=null; 
 
 
 private InputMatrix() 
 { 
  super("Input Parameters Box"); 
 
  Container c=getContentPane(); 
  c.setLayout(new FlowLayout()); 
 
  text1=new JTextField(20); 
  text1.setToolTipText("Key in the rows hit Enter."); 
  c.add(text1); 
 
  text2=new JTextField(20); 
  text2.setToolTipText("Key in the columns hit Enter"); 
  c.add(text2); 
 
  TextFieldHandler handler = new TextFieldHandler(); 
  text1.addActionListener(handler); 
  text2.addActionListener(handler); 
 
  setSize(325, 200); 
  show(); 
 } 
 
 public static void main(String args[]) 
 { 
  InputMatrix inputMatrix=new InputMatrix(); 
 
  inputMatrix.addWindowListener(   
        new WindowAdapter() 
        { 
         public void windowClosing(WindowEvent e) 
         { 
          System.exit(0); 
         } 
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        } 
       ); 
 } 
 
 private class TextFieldHandler implements ActionListener 
 { 
 
  private FileInputStream fis; 
  private FileOutputStream fos; 
 
  public void actionPerformed(ActionEvent e) 
  { 
   if(e.getSource()==text1){ 
    s="input rows: "+ e.getActionCommand(); 
    rows=(String)e.getActionCommand(); 
    text2.requestFocus(); 
   } 
   else if(e.getSource()==text2){ 
    s="input columns: " + e.getActionCommand(); 
    columns=(String)e.getActionCommand(); 
    text1.requestFocus(); 
   } 
 
   if((rows != null) && ( columns!=null)){ 
    JOptionPane.showMessageDialog(null, rows + "  " + columns); 
    createMatrix(); 
   } 
  } 
 
  private void createMatrix() 
  { 
   outputFileBuffer=JOptionPane.showInputDialog(null,"Enter Output File Name"); 
   try{ 
    FileWriter fw=new FileWriter(outputFileBuffer); 
    BufferedWriter bw=new BufferedWriter(fw); 
    PrintWriter outFile=new PrintWriter(bw); 
    int counter=0; 
    int contour=0; 
 
    for(int i=1; i<=Integer.parseInt(rows); i++) 
    { 
     counter=0; 
     contour=0; 
     outFile.print("\n"); 
     for(int j=1; j<=Integer.parseInt(columns); j++) 
     { 
      if(counter % 10 ==0){ 
       outFile.print(Integer.toString(contour)); 
       outFile.print(" "); 
       contour=contour+100; 
      } 
      else 
       outFile.print("0 "); 
      counter=counter+1; 
     } 
    } 
 
    outFile.close(); 
   } 
   catch(IOException ioe) 
   { 
 
   } 
  } 
 } 
} 
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/* 
 * InterpolatorUI Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 24, 2002 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * This class provides all UI services and represents the view layer 
 * for the Linear, Laplacian and Thin Plate Equation Solver System. 
 * 
 *************************************************************************/ 
 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import java.util.StringTokenizer; 
import graphics.*; 
import java.awt.image.*; 
 
 
public class InterpolatorUI extends JFrame 
{ 
//--------------------------------------------------------------------------- 
//  class variables 
 
 private JTextArea t1; 
 private JTextField text1; 
 private Box b=Box.createHorizontalBox(); 
 private String inputFileBuffer; 
 private String outputFileBuffer; 
 private JMenuItem openItem; 
 private JMenuItem openOutputItem; 
 private JMenuItem linearItem; 
 private JMenuItem laplacianItem; 
 private JMenuItem thinPlateItem; 
 private JMenuItem setIterationItem; 
 private JMenuItem setGraphicsItem; 
 private JMenuItem openGraphicsItem; 
 private InterpolatorIO interpolatorIO=new InterpolatorIO(); 
 private int iterations; 
 private Painter painter; 
 private boolean linearLock=true; 
 private int height, width; 
 private Image img; 
 private double startTime, stopTime; 
 
//--------------------------------------------------------------------------- 
 
 ////////////////////////////////////////////////////////////////////////// 
 // No argument constructor for InterpolatorUI 
 ////////////////////////////////////////////////////////////////////////// 
 
 private InterpolatorUI() 
 { 
  super("Linear, Laplacian and Thin Plate Solver"); 
  setMenuBar(); 
  Container c=getContentPane(); 
  setTextArea(b); 
  c.add(b); 
  setSize(450, 450); 
  show(); 
 } 
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////////////////////////////////////////////////////////////////////////// 
 // This method sets up the menu bar and determines actionPerformed() 
 // Certain menu selections are initially disabled. 
 // Some reporting to the TextArea occurs as well. 
 ////////////////////////////////////////////////////////////////////////// 
 
 private void setMenuBar() 
 { 
  JMenuBar bar = new JMenuBar(); 
  this.setJMenuBar(bar); 
 
  JMenu fileMenu=new JMenu("File"); 
  fileMenu.setMnemonic('F'); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for getting the input file name and opening input text file 
  // by selecting File|Input Text File. 
  ////////////////////////////////////////////////////////////////////// 
 
  openItem=new JMenuItem("Open Input Text File"); 
  openItem.setMnemonic('I'); 
  openItem.addActionListener( 
   new ActionListener()//inline class instantiation and definition 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     try{inputFileBuffer=JOptionPane.showInputDialog( 
      InterpolatorUI.this, 
      "Enter Input Text File Name"); 
      interpolatorIO.openInputTextFile(inputFileBuffer); 
      t1.append("\nInput file name:  " + inputFileBuffer); 
      interpolatorIO.getTextInputData(); 
 
      try{interpolatorIO.closeInputTextFile(); 
       } 
      catch(IOException ioe){JOptionPane.showMessageDialog( 
       null, 
       "Could not close input file."); 
      } 
 
 
      openItem.setEnabled(false); 
      openOutputItem.setEnabled(true); 
      openGraphicsItem.setEnabled(false); 
     } 
     catch(IOException ioe){ 
      JOptionPane.showMessageDialog( 
      null, 
      "Could not open input file or file does not exist."); 
     } 
    } 
   } 
  ); 
  fileMenu.add(openItem); 
 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for getting the input file name and opening an input graphics 
  // file 
  // by selecting File|Input Graphics File. 
  ////////////////////////////////////////////////////////////////////// 
 
  openGraphicsItem=new JMenuItem("Open Input Graphics File"); 
  openGraphicsItem.setMnemonic('I'); 
  openGraphicsItem.addActionListener( 
   new ActionListener()//inline class instantiation and definition 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     try{inputFileBuffer=JOptionPane.showInputDialog( 
      InterpolatorUI.this, 
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      "Enter Input Graphics File Name"); 
      openInputGraphicsFile(inputFileBuffer); 
      t1.append("\nInput file name:  " + inputFileBuffer); 
      openGraphicsItem.setEnabled(false); 
      openItem.setEnabled(false); 
      openOutputItem.setEnabled(true); 
      linearLock=false; 
     } 
     catch(IOException ioe){ 
      JOptionPane.showMessageDialog( 
      null, 
      "Could not open input file or file does not exist."); 
     } 
    } 
   } 
  ); 
  fileMenu.add(openGraphicsItem); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for getting the output file name by selecting File|Input. 
  ////////////////////////////////////////////////////////////////////// 
 
  openOutputItem=new JMenuItem("Open Output"); 
    openOutputItem.setMnemonic('I'); 
    openOutputItem.addActionListener( 
     new ActionListener() 
     { 
      public void actionPerformed(ActionEvent e) 
      { 
       try{outputFileBuffer=JOptionPane.showInputDialog( 
        InterpolatorUI.this, 
        "Enter Output File Name"); 
        interpolatorIO.openOutputTextFile(outputFileBuffer); 
        t1.append("\nOutput file name:  " + outputFileBuffer); 
        openOutputItem.setEnabled(false); 
        setIterationItem.setEnabled(true); 
        if(linearLock)linearItem.setEnabled(true); 
       } 
       catch(IOException ioe){ 
        JOptionPane.showMessageDialog( 
        null, 
        "Could not open output file or file does not exist."); 
       } 
      } 
     } 
    ); 
    fileMenu.add(openOutputItem); 
    openOutputItem.setEnabled(false); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for exiting. 
  ////////////////////////////////////////////////////////////////////// 
 
  JMenuItem exitItem=new JMenuItem("Exit"); 
  exitItem.setMnemonic('x'); 
  exitItem.addActionListener 
  ( new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     System.exit(0); 
    } 
   } 
  ); 
  fileMenu.add(exitItem); 
  bar.add(fileMenu); 
 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for getting the number of iterations. 
  ////////////////////////////////////////////////////////////////////// 
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  JMenu iterationMenu=new JMenu("Iterations"); 
  setIterationItem=new JMenuItem("Set Iterations"); 
  setIterationItem.setMnemonic('S'); 
  setIterationItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     try{iterations=Integer.parseInt(JOptionPane.showInputDialog( 
      InterpolatorUI.this, 
      "Enter the Number of Iterations")); 
      openOutputItem.setEnabled(false); 
      linearItem.setEnabled(true); 
      setIterationItem.setEnabled(false); 
      linearItem.setEnabled(false); 
      laplacianItem.setEnabled(true); 
      thinPlateItem.setEnabled(true); 
     } 
     catch(NumberFormatException nfe){ 
      JOptionPane.showMessageDialog( 
      null, 
      "You must enter an integer."); 
     } 
     t1.append("\nRunning:  "+iterations+" iterations.\n"); 
    } 
   } 
  ); 
  iterationMenu.add(setIterationItem); 
  setIterationItem.setEnabled(false); 
  bar.add(iterationMenu); 
 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for running the linear equation solver. 
  // 
  // Note: some fancy footwork here with re-opening the input file. 
  // The problem is that the linear solver needs some special error 
  // checking on its input matrix that the Laplacian and Thin Plate 
  // solvers do not need.  So their file reading code is called from 
  // the 'openInputTextFile()' method in the text file open 
  // action event handler.  After opening and reading the file, it 
  // is immediately closed. 
  // 
  // Since this file has not been error checked, it will not do for 
  // the linear solver.  So the file is opened again so the file 
  // pointer can be re-zeroed for the special code in the 
  // interpolatorIO.linearSolver() method. 
  ////////////////////////////////////////////////////////////////////// 
 
  JMenu runMenu=new JMenu("Run"); 
  runMenu.setMnemonic('R'); 
  linearItem=new JMenuItem("Linear Equation Solver"); 
  linearItem.setMnemonic('r'); 
  linearItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     interpolatorIO.setRows(0); 
     interpolatorIO.setCols(0); 
     try{interpolatorIO.openInputTextFile(inputFileBuffer); 
 
    } 
    catch(IOException ioe){JOptionPane.showMessageDialog( 
     null, 
     "Could not open input file or file does not exist."); 
    } 
     t1.append("\n\nrunning solver...\n\n"); 
     startTime=java.lang.System.currentTimeMillis(); 
     t1.append(interpolatorIO.linearSolver()); 
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     stopTime=java.lang.System.currentTimeMillis(); 
     t1.append("\nElapsed time = "+ (stopTime-startTime)/1000.0 + " seconds."); 
     t1.append("\n\nEnd of successful run."); 
     try{interpolatorIO.closeInputTextFile(); 
      } 
     catch(IOException ioe){JOptionPane.showMessageDialog( 
      null, 
      "Could not close input file."); 
     } 
 
     try{interpolatorIO.closeOutputTextFile(); 
      } 
     catch(IOException ioe){JOptionPane.showMessageDialog( 
      null, 
      "Could not close output file."); 
        } 
 
     linearItem.setEnabled(false); 
     setGraphicsItem.setEnabled(false); 
     setIterationItem.setEnabled(false); 
     thinPlateItem.setEnabled(false); 
     laplacianItem.setEnabled(false); 
    } 
   } 
  ); 
  runMenu.add(linearItem); 
  linearItem.setEnabled(false); 
  bar.add(runMenu); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for running the Laplacian equation solver. 
  ////////////////////////////////////////////////////////////////////// 
 
  laplacianItem=new JMenuItem("Laplacian Equation Solver"); 
  laplacianItem.setMnemonic('r'); 
  laplacianItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     t1.append("\nrunning Laplacian solver...\n"); 
     startTime=java.lang.System.currentTimeMillis(); 
     t1.append(interpolatorIO.laplacianSolver(iterations)); 
     stopTime=java.lang.System.currentTimeMillis(); 
     t1.append( "\nInput matrix size:  "+ 
        interpolatorIO.getRows()+ 
        " rows by "+ 
        interpolatorIO.getCols()+" columns."); 
     t1.append("\nEnd of successful run."); 
     t1.append("\nElapsed time = "+ (stopTime-startTime)/1000.0 + " seconds."); 
     try{interpolatorIO.closeOutputTextFile(); 
      } 
     catch(IOException ioe){JOptionPane.showMessageDialog( 
      null, 
      "Could not close output file."); 
     } 
     laplacianItem.setEnabled(false); 
     thinPlateItem.setEnabled(false); 
     setGraphicsItem.setEnabled(true); 
    } 
   } 
  ); 
  runMenu.add(laplacianItem); 
  laplacianItem.setEnabled(false); 
 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for running the Thin Plate equation solver. 
  ////////////////////////////////////////////////////////////////////// 
 
  thinPlateItem=new JMenuItem("Thin Plate Equation Solver"); 
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  thinPlateItem.setMnemonic('r'); 
  thinPlateItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     t1.append("\nrunning Thin Plate solver...\n"); 
     startTime=java.lang.System.currentTimeMillis(); 
     t1.append(interpolatorIO.thinPlateSolver(iterations)); 
     stopTime=java.lang.System.currentTimeMillis(); 
     t1.append( "\nInput matrix size:  "+ 
        interpolatorIO.getRows()+ 
        " rows by "+interpolatorIO.getCols()+ 
        " columns."); 
        t1.append("\nEnd of successful run."); 
     t1.append("\nElapsed time = "+ (stopTime-startTime)/1000.0 + " seconds."); 
     try{interpolatorIO.closeOutputTextFile(); 
      } 
     catch(IOException ioe){JOptionPane.showMessageDialog( 
      null, 
      "Could not close output file."); 
     } 
     thinPlateItem.setEnabled(false); 
     laplacianItem.setEnabled(false); 
     setGraphicsItem.setEnabled(true); 
    } 
   } 
  ); 
  runMenu.add(thinPlateItem); 
  thinPlateItem.setEnabled(false); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for the 'About' menu. 
  ////////////////////////////////////////////////////////////////////// 
 
  JMenu aboutMenu=new JMenu("About"); 
  aboutMenu.setMnemonic('A'); 
  JMenuItem aboutItem=new JMenuItem("About..."); 
  aboutItem.setMnemonic('a'); 
  aboutItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     JOptionPane.showMessageDialog( 
      InterpolatorUI.this, 
      aboutString(), 
      "About", 
      JOptionPane.PLAIN_MESSAGE); 
    } 
   } 
  ); 
  aboutMenu.add(aboutItem); 
  bar.add(aboutMenu); 
 
  ////////////////////////////////////////////////////////////////////// 
  // Code for pop up graphics window. 
  ////////////////////////////////////////////////////////////////////// 
 
  JMenu graphicsMenu=new JMenu("Graphics"); 
  setGraphicsItem=new JMenuItem("Generate Graphics"); 
  setGraphicsItem.setMnemonic('G'); 
  setGraphicsItem.addActionListener( 
   new ActionListener() 
   { 
    public void actionPerformed(ActionEvent e) 
    { 
     painter=new Painter(interpolatorIO.getRows(), 
          interpolatorIO.getCols(), 
          interpolatorIO.getN()); 
     painter.addWindowListener( 
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      new WindowAdapter(){ 
       public void windowClosing(WindowEvent e){ 
        //default close focus window. 
       } 
      } 
     ); 
    } 
   } 
  ); 
  graphicsMenu.add(setGraphicsItem); 
  setGraphicsItem.setEnabled(false); 
  bar.add(graphicsMenu); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method sets up the text area. 
 ///////////////////////////////////////////////////////////////////////// 
 
 private void setTextArea(Box b) 
 { 
 
    String s= "Welcome to the Linear Equation Solver/Laplacian"+ 
       "and Thin PlateSolver.\n"+ 
       "Select File | Open Input to get started.\n"; 
    t1=new JTextArea(s, 100,150); 
    t1.setEditable(false); 
    b.add(new JScrollPane(t1)); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method returns the About Message string. 
  ///////////////////////////////////////////////////////////////////////// 
 
  private String aboutString() 
  { 
  String messageString= 
   "Gauss-Jordan Linear Equation Solver and " + 
   "Laplacian/Thin Plate Equation Solver v1.01 \n"+ 
   "Copyright 2002 John Childs\n\n" + 
   "This program solves simultaneous linear equations\n" + 
   "using the Gauss-Jordan elimination method\n" + 
   "and interpolates free data to fixed data using\n" + 
   "the Laplacian Heat Equation and the\n"+ 
   "Thin Plate Equation.\n\n"+ 
 
   "If the input file is a text file it must be a space-separated\n" + 
   "ASCII file of decimal numbers.  The program\n"+ 
   "is looking for a (rows x (cols=rows+1)) input data matrix\n" + 
   "for the Linear solver and a rows x columns input data matrix\n" + 
   "for the Laplacian and Thin Plater solvers." + 
   "if the matrix is oversized, it will truncate.  If undersized\n" + 
   "an exception will be thrown.  The program reads the rows and\n"+ 
   "columns automatically from the input file.\n\n" + 
 
   "Alternatively, the input file can be a .gif or .jpg file\n" + 
   "with the elevation data encoded in the RGB values of the\n"+ 
   "contour line pixels.\n\n" + 
 
   "For example, a contour line elevation of 255 would be encoded as\n" + 
   "0x0000ff in an RGB color model, i.e. a blue line on a black\n"+ 
   "background.\n\n" + 
 
   "To use the program, first enter the input file name.\n" + 
   "Then you will be able to enter the output file name.\n\n" + 
 
   "If you are running the Laplace solver or the Thin Plate\n"+ 
   "you must enter the \n number of iterations you wish to run.\n\n"+ 
 
   "After this is done, click on \"run\" \n\n" + 
 
   "For Linear Equations, the solution vector will be output as a \n"+ 
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   "row vector into the output file you have specified.\n\n"+ 
 
   "For the Laplace and Thin Plate solvers, the entire solution  \n"+ 
   "matrix will be written into the output file you \n"+ 
   "have specified.\n\n"+ 
 
   "You have the option of viewing the results of the Laplacian\n"+ 
   "or Thin Plate results graphically.\n\n"; 
 
  return(messageString); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method gets data from the input graphics file and displays 
  // the input image. 
  // 
  // It is arguable whether this is a display or control function.  There 
  // are probably elements of both. 
  // 
  // However, some of the functions will not work without an active 
  // window so this is an easier place to implement it than the 
  // interpolatorIO class. 
  ///////////////////////////////////////////////////////////////////////// 
 
  public void openInputGraphicsFile(String fileName) throws IOException 
  { 
 
  try{img = Toolkit.getDefaultToolkit().getImage(fileName); 
  } 
  catch(Exception e){JOptionPane.showMessageDialog( 
      null, 
      " error opening input file."); 
  } 
 
  try { 
      MediaTracker tracker = new MediaTracker(this); 
      tracker.addImage(img, 0); 
            tracker.waitForID(0); 
  } 
  catch (Exception e) {JOptionPane.showMessageDialog( 
      null, 
      "MediaTracker problem."); 
  } 
  width = img.getWidth(this); 
  height = img.getHeight(this); 
  if(width==-1 || height==-1){ 
   JOptionPane.showMessageDialog( 
         null, 
      "Graphics file not found in specified directory."); 
      System.exit(0); 
  } 
 
  int[] pixels = new int[width * height]; 
  PixelGrabber pg=new PixelGrabber(img,0,0,width,height,pixels,0,width); 
  try{ 
  pg.grabPixels(); 
  } 
  catch (InterruptedException e) {JOptionPane.showMessageDialog( 
      null, 
      "Error grabbing pixels.."); 
  } 
  interpolatorIO.initializeArray(width, height, pixels); 
 
  MemoryImageSource mis = new MemoryImageSource(width, height, pixels, 0, width); 
  Image testImage = this.createImage(mis); 
  t1.append( "\nwidth:  "+width); 
  t1.append( "\nheight:  "+height); 
  InputPainter inputPainter=new InputPainter(testImage, width, height); 
 } 
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////////////////////////////////////////////////////////////////////////// 
 // Root method 
 ///////////////////////////////////////////////////////////////////////// 
 
 public static void main(String args[]) 
 { 
  InterpolatorUI app=new InterpolatorUI(); 
 
  app.addWindowListener( 
   new WindowAdapter(){ 
    public void windowClosing(WindowEvent e){ 
     System.exit(0); 
    } 
   } 
  ); 
 } 
}  
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/* 
 * InterpolatorIO Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 24, 2002 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * This class provides IO services for the Interpolator classes. 
 * 
 *************************************************************************/ 
import java.util.StringTokenizer; 
import java.text.DecimalFormat; 
import java.io.*; 
import javax.swing.*; 
import java.awt.*; 
import solvers.*; 
 
////////////////////////////////////////////////////////////////////////// 
// This class encapsulates i/o utilities for a UI 
////////////////////////////////////////////////////////////////////////// 
 
public class InterpolatorIO 
{ 
 private FileWriter fw; 
 private BufferedWriter bw; 
 private PrintWriter outFile; 
 private LinearEquationSolver linearSolver; 
 private ThinPlateSolver thinPlateSolver; 
 private LaplacianSolver laplacianSolver; 
 private LaplacianSolver tempSolver; 
 private ThinPlateSolver otherTempSolver; 
 private LinearEquationSolver linearTempSolver; 
 private FileReader fr; 
 private BufferedReader inFile; 
 private StringTokenizer tokenizer; 
 private int rows, cols; 
 private double rowArray[]; 
 private  double M[][]; 
 private  double N[][]; 
 private boolean lineCheck=false; 
 private int I[][]; 
 private int lineCounter; 
 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Constructor. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public InterpolatorIO() 
    { 
 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method creates a DecimalFormat object for formatting the file 
 // output string.  It returns a string formatted to the specified decimal 
 // precision. 
 ////////////////////////////////////////////////////////////////////////// 
 public String customFormat(String pattern, double value ) 
 { 
       DecimalFormat myFormatter = new DecimalFormat(pattern); 
       String output = myFormatter.format(value); 
  return(output); 
    } 
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 ////////////////////////////////////////////////////////////////////////// 
 // This method opens a text file for output. 
 ///////////////////////////////////////////////////////////////////////// 
 public void openOutputTextFile(String fileName) throws IOException 
 { 
  fw=new FileWriter(fileName); 
  bw=new BufferedWriter(fw); 
  outFile=new PrintWriter(bw); 
    } 
 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method writes the specified string to the specified output file. 
 ////////////////////////////////////////////////////////////////////////// 
 private void writeString(String outputString) 
 { 
  outFile.print(outputString); 
    } 
 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method closes the specified output file. 
  ///////////////////////////////////////////////////////////////////////// 
  public void closeOutputTextFile() throws IOException 
  { 
   outFile.close(); 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method closes the specified input file. 
  ///////////////////////////////////////////////////////////////////////// 
  public void closeInputTextFile() throws IOException 
  { 
 
   try{inFile.close(); 
   } 
   catch(IOException ioe){ JOptionPane.showMessageDialog( 
         null, 
         "Could not close input file."); 
  } 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method opens a text file for input.  I have to open stream, 
 // read all of the lines to get the row count, close the stream, 
 // and then re open it.  This was the only way I cound to re-zero 
 // the file position pointer. 
 ////////////////////////////////////////////////////////////////////////// 
 public void openInputTextFile(String fileName) throws IOException 
 { 
  fr=new FileReader(fileName); 
  inFile=new BufferedReader(fr);///////////////////////////////////////////////// 
 
  while(inFile.readLine() !=null){ 
     lineCounter=lineCounter+1; 
  } 
  rows=lineCounter; 
  lineCounter=0; 
  inFile.close(); 
 
  fr=new FileReader(fileName); 
  inFile=new BufferedReader(fr);///////////////////////////////////////////////// 
    } 
 
 
  ////////////////////////////////////////////////////////////////////////// 
  // This method reads a line from the specified input file. 
  ///////////////////////////////////////////////////////////////////////// 
  public String readOneLine(BufferedReader readerObject) 
  { 
   String line=null; 
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   try{line=readerObject.readLine(); 
   } 
   catch(IOException ioe){ 
    JOptionPane.showMessageDialog(null, 
   "Error reading line of input file."); 
   } 
   return line; 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method parses one input line turning a line of text into an array 
  // of doubles. 
  ////////////////////////////////////////////////////////////////////////// 
  private double[] parseLine(String line) 
  { 
   tokenizer=new StringTokenizer(line); 
   double[] lineArray = new double[line.length()]; 
   int i=0; 
  if(tokenizer.countTokens() != cols){ 
   JOptionPane.showMessageDialog(null, 
    "\n\n***Warning: number of elements does not match"+ 
          "column dimension." + 
    "\n***Matrix is probably corrupt.***" + 
          "\n***Please check your input data file.***\n" ); 
  } 
   while(tokenizer.hasMoreTokens()){ 
   lineArray[i]=Double.parseDouble(tokenizer.nextToken()); 
   i=i+1; 
  } 
  return(lineArray); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method parses first input line.  The first line is handled 
  // as a special case so that the row and column information can be 
  // extracted and calculated once. 
  ///////////////////////////////////////////////////////////////////////// 
  private double[] parseFirstLine(String line) throws IOException 
  { 
   tokenizer=new StringTokenizer(line); 
   double[] lineArray = new double[line.length()]; 
   int i=0; 
   cols=tokenizer.countTokens(); 
   
 
  /////////////////////////////////////////////////////////////////////////////////// 
      //  System.out.println("parseFirstLine rows is:  " + rows + "\n"); 
      //  System.out.println("parseFirstLine cols is:  " + cols + "\n"); 
  /////////////////////////////////////////////////////////////////////////////////// 
 
   while(tokenizer.hasMoreTokens()){ 
   lineArray[i]=Double.parseDouble(tokenizer.nextToken()); 
   i=i+1; 
  } 
  return(lineArray); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method handles the first line of the input file. 
  ///////////////////////////////////////////////////////////////////////// 
  public void readFirstLine() throws IOException 
  { 
  rowArray=parseFirstLine(readOneLine(inFile)); 
  M=new double[rows][cols]; 
  M[0]=rowArray; 
 
  for(int j=0; j<cols-1; j++){ 
   if(lineCheck==false){ 
    if(rowArray[j]!=0.0){ 
     lineCheck=true; 
    } 
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   } 
  } 
 
  if(lineCheck==false){ 
   if(rowArray[cols-1]==0.0){ 
    lineCheck=true; 
   } 
  } 
 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method handles the rest of the lines of the input file. 
  ///////////////////////////////////////////////////////////////////////// 
  public void readOtherLines() throws IOException 
  { 
 
  for(int i=1; i<rows; i++){ 
   rowArray=parseLine(readOneLine(inFile)); 
   for(int j=0; j<cols; j++){ 
    M[i][j]=rowArray[j]; 
   } 
  } 
 
  for(int j=0; j<cols-1; j++){ 
   if(lineCheck==false){ 
    if(rowArray[j]!=0.0){ 
     lineCheck=true; 
    } 
   } 
  } 
 
  if(lineCheck==false){ 
   if(rowArray[cols-1]==0.0){ 
    lineCheck=true; 
   } 
  } 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method solves the matrix of linear equations. 
  ///////////////////////////////////////////////////////////////////////// 
  public String linearSolver() 
  { 
  try{readFirstLine(); 
  } 
  catch(IOException ioe){ 
   JOptionPane.showMessageDialog( 
   null, 
   "Error reading the first line of the file."); 
  } 
 
  if(lineCheck==false){ 
   return(noSolutionMessage()); 
  } 
  else{try{readOtherLines(); 
   } 
   catch(IOException ioe){ 
    JOptionPane.showMessageDialog( 
    null, 
    "Error reading a line of the file."); 
   } 
   if(lineCheck==false){ 
    return(noSolutionMessage()); 
   } 
   else{return(solveLinearEquations()); 
   } 
  } 
 
 } 
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 ////////////////////////////////////////////////////////////////////////// 
  // This method calls the solver and calculates the solution vector. 
  ///////////////////////////////////////////////////////////////////////// 
  private String solveLinearEquations() 
  { 
  String returnString=null; 
  linearSolver = new LinearEquationSolver(rows, cols, M); 
  linearTempSolver=linearSolver.gaussJord(); 
  N=linearTempSolver.M; 
  returnString=linearTempSolver.toString(); 
        for(int i=0; i<rows; i++){ 
   for(int j=0; j<cols; j++){ 
         writeString(customFormat("000.00  ", 
          N[i][j])); 
   } 
  } 
  writeString("\n"); 
  return(returnString); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method solves the matrix of elevations using the Laplacian 
  // equation. 
  // 
  // For the time being, I have deleted the lineCheck test but allowed 
  // readFirstLine() and readOtherLines() to continue making the comarisons. 
  // 
  // For large files, it may be advisable to write alternative versions 
  // of these methods to be called by laplacianSolver() to eliminate 
  // this checking, which is necessary for the linear equation solver 
  // but unnecessary for the laplacian solver. 
  ////////////////////////////////////////////////////////////////////////// 
  public String laplacianSolver(int iterations) 
  { 
  return(solveLaplacianEquations(iterations)); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method calls the solver and relaxes the matrix using the 
  // Laplacian equation, then writes the result to the output file. 
  ///////////////////////////////////////////////////////////////////////// 
  private String solveLaplacianEquations(int iterations) 
  { 
  String returnString=null; 
  laplacianSolver = new LaplacianSolver(rows, cols, M, iterations); 
  tempSolver=laplacianSolver.laplacian(); 
  N=tempSolver.M; 
  returnString=(tempSolver.toString()); 
        for(int i=0; i<rows; i++){ 
   for(int j=0; j<cols; j++){ 
          writeString(customFormat("000.00  ", 
      N[i][j] )); 
    } 
   writeString("\n"); 
  } 
  return(returnString); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method solves the matrix of elevations using the Thin Plate 
 // equation. 
 // 
 // For the time being, I have deleted the lineCheck test but allowed 
 // readFirstLine() and readOtherLines() to continue making the comarisons. 
 // 
 // For large files, it may be advisable to write alternative versions 
 // of these methods to be called by thinPlateSolver() to eliminate 
 // this checking, which is necessary for the linear equation solver 
 // but unnecessary for the laplacian solver. 
 ////////////////////////////////////////////////////////////////////////// 
 public String thinPlateSolver(int iterations) 
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 { 
  return(solveThinPlateEquations(iterations)); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method calls the solver and relaxes the matrix using the 
 // Thin Plate equation, then writes the result to the output file. 
 ///////////////////////////////////////////////////////////////////////// 
 private String solveThinPlateEquations(int iterations) 
 { 
  String returnString=null; 
  thinPlateSolver = new ThinPlateSolver(rows, cols, M, iterations); 
  otherTempSolver=thinPlateSolver.thinPlate(); 
  N=otherTempSolver.M; 
  returnString=(otherTempSolver.toString()); 
     for(int i=0; i<rows; i++){ 
   for(int j=0; j<cols; j++){ 
          writeString(customFormat("000.00  ", 
      N[i][j] )); 
   } 
   writeString("\n"); 
  } 
  return(returnString); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method returns a "no solution" error message. 
  ///////////////////////////////////////////////////////////////////////// 
  private String noSolutionMessage() 
  { 
  return("\n\n***Warning: no solution possible" + 
  "\n***One row of the input matrix is of the form: ***" + 
        "\n***CONSTANT=0***" + 
        "\n***Please check your input data file.***\n" ); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method returns the matrix N 
  ///////////////////////////////////////////////////////////////////////// 
  public double[][] getN() 
  { 
  return(N); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method returns the rows 
  ///////////////////////////////////////////////////////////////////////// 
  public int getRows() 
  { 
  return(rows); 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method sets the rows 
  ///////////////////////////////////////////////////////////////////////// 
 
  public void setRows(int rowValue) 
  { 
  rows=rowValue; 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method returns the columns 
  ///////////////////////////////////////////////////////////////////////// 
  public int getCols() 
  { 
  return(cols); 
 } 
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////////////////////////////////////////////////////////////////////////// 
  // This method sets the cols 
  ///////////////////////////////////////////////////////////////////////// 
  public void setCols(int colValue) 
  { 
  cols=colValue; 
 } 
 
 ////////////////////////////////////////////////////////////////////////// 
  // This method gets the input data for text files. 
  ///////////////////////////////////////////////////////////////////////// 
  public void getTextInputData() 
  { 
  try{readFirstLine(); 
  } 
  catch(IOException ioe){ 
   JOptionPane.showMessageDialog( 
   null, 
   "Error reading the first line of the file."); 
  } 
 
  try{readOtherLines(); 
  } 
  catch(IOException ioe){ 
   JOptionPane.showMessageDialog( 
   null, 
   "Error reading a line of the file."); 
  } 
 } 
 ////////////////////////////////////////////////////////////////////////// 
  // This method transfers the graphics information stored in the 1D 
  // pixels[] file into the 2D integer I[][] file.  The data is then 
  // transferred to the double M[][] matrix. 
  ///////////////////////////////////////////////////////////////////////// 
  public void initializeArray(int rows, int cols, int pixels[]) 
  { 
  this.rows=rows; 
  this.cols=cols; 
 
  I=new int[rows][cols]; 
  M=new double[rows][cols]; 
  int index=0; 
  for(int i=0; i<cols; i++){ 
   for(int j=0; j<rows; j++){ 
    I[j][i]=pixels[index]& 0x00ffffff; 
    M[j][i]=(double)I[j][i]; 
    index=index+1; 
   } 
  } 
 } 
} 
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/* 
 * LaplacianSolver Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 21, 2002 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * This class encapsulates Laplacian solver utilities. 
 * 
 * 
 *************************************************************************/ 
package solvers; 
 
import java.text.DecimalFormat; 
////////////////////////////////////////////////////////////////////////// 
// This class encapsulates an augmented matrix of linear equation 
//  coefficients. 
////////////////////////////////////////////////////////////////////////// 
 
public class LaplacianSolver 
{ 
    private int rows, cols, iterations; 
    public double M[][]; 
    public double N[][]; 
 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Constructor for args rows, columns and a 2D matrix of type double. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public LaplacianSolver(int tRows, int tCols, double T[][], int iterations) 
    { 
        M = new double[tRows][tCols]; 
        N = new double[tRows][tCols]; 
        rows = tRows; 
        cols = tCols; 
        this.iterations=iterations; 
 
        for(int i=0; i<rows; i++) 
            for(int j=0; j<cols; j++){ 
                M[i][j] = T[i][j]; 
                N[i][j] = T[i][j]; 
   } 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Perform multiple iteration Laplacian calculation on Matrix M of 
 // size rows, cols. 
 // 
 // Procedure: 
 // 
 // 1) The calculation is run on a subregion of the input matrix.  The 
 //    subregion is offset inwards from the edge of the map by one 
 //    index unit.  This allows the Laplacian equation to be run 
 //    without any special cases for the edges. 
 // 
 // 2) The edges are assigned elevations by mapping the offset rows 
 //    or columns to the edges before each iteration. 
 ////////////////////////////////////////////////////////////////////////// 
    public LaplacianSolver laplacian() 
    { 
  //      LaplacianSolver solver = new LaplacianSolver(rows,cols,M, iterations); 
 
 
  for(int k=0; k<iterations; k++){ 
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   ////////////////////////////////////////////////////////////////// 
   // This code transfers elevations across the offset boundaries 
   // to the edge of the map. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    M[i][0]=M[i][1]; 
    M[i][cols-1]=M[i][cols-2]; 
   } 
   for(int j=1; j<cols-1; j++){ 
    M[0][j]=M[1][j]; 
    M[rows-1][j]=M[rows-2][j]; 
   } 
   M[0][0]=M[1][1]; 
   M[rows-1][cols-1]=M[rows-2][cols-2]; 
   M[0][cols-1]=M[1][cols-2]; 
   M[rows-1][0]=M[rows-2][1]; 
 
   ////////////////////////////////////////////////////////////////// 
   // This code uses the Laplacian equation to calculate the new 
   // elevations for the offset region. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    for(int j=1; j<cols-1; j++){ 
     if(N[i][j]==0.0){ 
      M[i][j]= (M[i-1][j] + M[i+1][j] + 
          M[i][j-1] + M[i][j+1])/4; 
     } 
    } 
   } 
 
   ////////////////////////////////////////////////////////////////// 
   // This code transfers elevations across the offset boundaries 
   // to the edge of the map. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    M[i][0]=M[i][1]; 
    M[i][cols-1]=M[i][cols-2]; 
   } 
   for(int j=1; j<cols-1; j++){ 
    M[0][j]=M[1][j]; 
    M[rows-1][j]=M[rows-2][j]; 
   } 
   M[0][0]=M[1][1]; 
   M[rows-1][cols-1]=M[rows-2][cols-2]; 
   M[0][cols-1]=M[1][cols-2]; 
   M[rows-1][0]=M[rows-2][1]; 
 
   ////////////////////////////////////////////////////////////////// 
   // This code computes the edge nodes as the average of its 
   // three neighbors. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    M[i][0]=(M[i][1] + M[i-1][0] + M[i+1][0])/3; 
    M[i][cols-1]=(M[i][cols-2] + M[i-1][cols-1] + M[i+1][cols-1])/3; 
   } 
   for(int j=1; j<cols-1; j++){ 
    M[0][j]=(M[1][j] + M[0][j-1] + M[0][j+1])/3; 
    M[rows-1][j]=(M[rows-2][j] + M[rows-1][j-1] + M[rows-1][j+1])/3; 
   } 
   M[0][0]=(M[0][1] + M[1][0])/2; 
   M[rows-1][cols-1]=(M[rows-1][cols-2] + M[rows-2][cols-1])/2; 
   M[0][cols-1]=(M[0][cols-2] + M[1][cols-1])/2; 
   M[rows-1][0]=(M[rows-2][0] + M[rows-1][1])/2; 
  } 
        return this; 
    } 
 
   ////////////////////////////////////////////////////////////////////////// 
 // Output the entire matrix as a String object. 
 ////////////////////////////////////////////////////////////////////////// 
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    public String toString() 
    { 
        String string = ""; 
  if(rows<40){ 
         for(int i=0;i<rows;i++){ 
               for(int j=0; j<cols; j++){ 
                  string += customFormat("000.00", M[i][j]) + "     "; 
     } 
             string += "\n"; 
          } 
          return string; 
  } 
  else{ 
   return("Output matrix is too large to display in text box.\n"+ 
     "See output file for data.\n\n"); 
  } 
    } 
 ////////////////////////////////////////////////////////////////////////// 
 // This method creates a DecimalFormat object for formatting the file 
 // output string.  It returns a string formatted to the specified decimal 
 // precision. 
 ////////////////////////////////////////////////////////////////////////// 
 public String customFormat(String pattern, double value ) 
 { 
       DecimalFormat myFormatter = new DecimalFormat(pattern); 
       String output = myFormatter.format(value); 
  return(output); 
    } 
} 
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 * ThinPlateSolver Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 21, 2002 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * This class encapsulates a matrix of elevations and the utilities 
 * needed to relax elevations using the Thin Plate equation. 
 * 
 * Note: because the Thin Plate equation requires data from positions 
 * offset by two index positions, the edges and the nodes offset 
 * one position from the edge constitute special cases that must 
 * be handled separately. 
 * 
 * The nodes offset two index positions are calculated using the 
 * Laplace equation while the edge nodes are merely copied from 
 * the doubly offset nodes. 
 * 
 * 
 *************************************************************************/ 
package solvers; 
 
import java.text.DecimalFormat; 
////////////////////////////////////////////////////////////////////////// 
// This class encapsulates an augmented matrix of linear equation 
//  coefficients. 
////////////////////////////////////////////////////////////////////////// 
 
public class ThinPlateSolver 
{ 
    private int rows, cols, iterations; 
    public double M[][]; 
    public double N[][]; 
 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Constructor for args rows, columns and a 2D matrix of type double. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public ThinPlateSolver(int tRows, int tCols, double T[][], int iterations) 
    { 
        M = new double[tRows][tCols]; 
        N = new double[tRows][tCols]; 
        rows = tRows; 
        cols = tCols; 
        this.iterations=iterations; 
 
        for(int i=0; i<rows; i++) 
            for(int j=0; j<cols; j++){ 
                M[i][j] = T[i][j]; 
                N[i][j] = T[i][j]; 
   } 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Perform multiple iteration Thin Plate calculation on Matrix M of 
 // size rows, cols. 
 // 
 // Procedure: 
 // 
 // 1) The calculation is run on a subregion of the input matrix.  The 
 //    subregion is offset inwards from the edge of the map by one 
 //    index unit.  This allows the Thin Plate equation to be run 
 //    without any special cases for the edges. 
 // 
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 // 2) The edges are assigned elevations by mapping the offset rows 
 //    or columns to the edges before each iteration. 
 ////////////////////////////////////////////////////////////////////////// 
    public ThinPlateSolver thinPlate() 
    { 
 
  for(int k=0; k<iterations; k++){ 
 
   ////////////////////////////////////////////////////////////////// 
   // This code uses the Laplacian equation to calculate the new 
   // elevations for the rows and columns offset one position 
   // from the edge. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    if(N[i][cols-2]==0.0){ 
     M[i][cols-2]=(M[i-1][cols-2] + M[i+1][cols-2] + 
         M[i][cols-3] + M[i][cols-1])/4; 
    } 
   } 
 
   for(int i=1; i<rows-1; i++){ 
    if(N[i][1]==0.0){ 
     M[i][1]= (M[i-1][1] + M[i+1][1] + 
         M[i][0] + M[i][2])/4; 
    } 
   } 
 
   for(int j=1; j<cols-1; j++){ 
    if(N[1][j]==0.0){ 
     M[1][j]= (M[1][j-1] + M[1][j+1] + 
         M[0][j] + M[2][j])/4; 
    } 
   } 
 
   for(int j=1; j<cols-1; j++){ 
    if(N[rows-2][j]==0.0){ 
     M[rows-2][j]= (M[rows-2][j-1] + M[rows-2][j+1] + 
         M[rows-3][j] + M[rows-1][j])/4; 
    } 
   } 
 
   ////////////////////////////////////////////////////////////////// 
   // This code calculates the elevations for the edge rows. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=1; i<rows-1; i++){ 
    M[i][0]=M[i][1]; 
    M[i][cols-1]=M[i][cols-2]; 
   } 
   for(int j=1; j<cols-1; j++){ 
    M[0][j]=M[1][j]; 
    M[rows-1][j]=M[rows-2][j]; 
   } 
   M[0][0]=M[1][1]; 
   M[rows-1][cols-1]=M[rows-2][cols-2]; 
   M[0][cols-1]=M[1][cols-2]; 
   M[rows-1][0]=M[rows-2][1]; 
 
 
   ////////////////////////////////////////////////////////////////// 
   // This code uses the Thin Plate equation to calculate the new 
   // elevations for the offset region using the Thin Plate 
   // equation. 
   ////////////////////////////////////////////////////////////////// 
   for(int i=2; i<rows-2; i++){ 
    for(int j=2; j<cols-2; j++){ 
     if(N[i][j]==0.0){ 
      M[i][j]= (8*(M[i-1][j] + M[i+1][j] + 
          M[i][j-1] + M[i][j+1]) - 
          2*(M[i-1][j-1] + M[i-1][j+1] + 
          M[i+1][j-1] + M[i+1][j+1]) - 
          (M[i-2][j] + M[i+2][j] + 
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          M[i][j-2] + M[i][j+2]))/20; 
     } 
    } 
   } 
  } 
 
//  System.out.println("rows is:  "+ rows); 
//    System.out.println("cols is:  "+ cols); 
//    System.out.println("iterations is:  "+ iterations); 
//      JOptionPane.showMessageDialog( 
//               null, 
//        "returning "); 
        return this; 
    } 
 
    ////////////////////////////////////////////////////////////////////////// 
 // Output the entire matrix as a String object. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public String toString() 
    { 
        String string = ""; 
  if(rows<40){ 
         for(int i=0;i<rows;i++){ 
               for(int j=0; j<cols; j++){ 
                  string += customFormat("00.00", M[i][j]) + "     ";////////////bad, bad 
line of code. 
     } 
             string += "\n"; 
          } 
          return string; 
  } 
  else{ 
   return("Output matrix is too large to display in text box.\n"+ 
     "See output file for data.\n\n"); 
  } 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method creates a DecimalFormat object for formatting the file 
 // output string.  It returns a string formatted to the specified decimal 
 // precision. 
 ////////////////////////////////////////////////////////////////////////// 
 private String customFormat(String pattern, double value ) 
 { 
       DecimalFormat myFormatter = new DecimalFormat(pattern); 
       String output = myFormatter.format(value); 
  return(output); 
    } 
 
} 
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/* 
 * LinearEquationSolver Class 
 * 
 * 
 ************************************************************************* 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 21, 2002 
 * Student:   John Childs 
 * 
 ************************************************************************* 
 * 
 * This class encapsulates an augmented matrix of linear equation 
 * coefficients along with the methods required to produce the 
 * solution vector. 
 * 
 *************************************************************************/ 
 
package solvers; 
 
////////////////////////////////////////////////////////////////////////// 
// This class encapsulates an augmented matrix of linear equation 
//  coefficients. 
////////////////////////////////////////////////////////////////////////// 
import java.text.DecimalFormat; 
 
public class LinearEquationSolver 
{ 
    private int rows, cols; 
    public double M[][]; 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Constructor for afgs rows, columns and a 2D matrix of type double. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public LinearEquationSolver(int tRows, int tCols, double T[][]) 
    { 
        M = new double[tRows][tCols]; 
        rows = tRows; 
        cols = tCols; 
 
        for(int i=0; i<rows; i++) 
            for(int j=0; j<cols; j++) 
                M[i][j] = T[i][j]; 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Swap row r1 with row r2 for the matrix M. 
 // Note: the matrix M in question is the one associated with the 
 // LinearEquationSolver object calling the method, not necessarily 
 // this.M. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public LinearEquationSolver swapRow(int r1, int r2) 
    { 
        double tempRow[] = new double[rows]; 
        LinearEquationSolver returnLinearEquationSolver = 
         new LinearEquationSolver(rows,cols,M); 
 
        if( (r1 >= rows) | (r2 >= rows) | (r1 < 0) | (r2 < 0) ) 
            throw new ArithmeticException( 
    "LinearEquationSolver.swapRow: r1 or r2 not within matrix: " 
    + r1 + ","+ r2 ); 
 
        tempRow = returnLinearEquationSolver.M[r1]; 
        returnLinearEquationSolver.M[r1] = returnLinearEquationSolver.M[r2]; 
        returnLinearEquationSolver.M[r2] = tempRow; 
 
        return returnLinearEquationSolver; 
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    } 
 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Multiply all the coefficients in row r1 by the scalar 'scalar'. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public LinearEquationSolver mulRow(int r1,double scalar) 
    { 
        LinearEquationSolver returnLinearEquationSolver = 
         new LinearEquationSolver(rows,cols,M); 
 
        if( (r1 >= rows) || (r1 < 0) ) 
            throw new ArithmeticException( 
    "LinearEquationSolver.mulRow: r1 not within matrix: " + r1); 
 
        for(int i=0; i<cols; i++) 
            returnLinearEquationSolver.M[r1][i] = M[r1][i] * scalar; 
 
        return returnLinearEquationSolver; 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Multiply each coefficient in row r1 by scalar. 
 // Then add each coefficient in r1 to each coeffiecient in r2 and 
 // place the result in r2. 
 // 
 // Return a new LinearEquationSolver object with the modified rows. 
 ////////////////////////////////////////////////////////////////////////// 
 
    public LinearEquationSolver addMulRow(int r1, int r2, double scalar) 
    { 
        LinearEquationSolver returnLinearEquationSolver = 
         new LinearEquationSolver(rows,cols,M); 
        LinearEquationSolver tempLinearEquationSolver = 
         new LinearEquationSolver(rows,cols,M); 
 
        if( (r1 >= rows) | (r2 >= rows) | (r1 < 0) | (r2 < 0) ) 
            throw new ArithmeticException( 
    "LinearEquationSolver.addMulRow: r1 or r2 not within matrix: " 
    + r1 + ","+r2); 
 
        tempLinearEquationSolver = tempLinearEquationSolver.mulRow(r1,scalar); 
 
        for(int i=0; i<cols; i++) 
            returnLinearEquationSolver.M[r2][i] = 
             returnLinearEquationSolver.M[r2][i] + 
             tempLinearEquationSolver.M[r1][i]; 
 
        return returnLinearEquationSolver; 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // Perform a Gauss-Jordan elimination on Matrix M of size rows, cols. 
 // 
 // Procedure: 
 // 
 // 1) Find the first non-zero coefficient. 
 // 2) Check to see if the row is all zeros. 
 // 3) Set the first non-zero cofficient to 1 by multiplying the entire 
 //    row containing that coefficient by 1/coefficient. 
 // 4) Set the all the coefficients directly above the pivot to 
 //    zero by successively multiplying the pivot equation by 
 //    (-1) * coefficient above and then adding the two rows together. 
 // 5) Set all the coefficients directly below the pivot to 
 //    zero by the same method. 
 // 6) Repeat until each row contains only a '1' in the pivot 
 //    location and zeros everywhere else, except for the last 
 //    column. 
 ////////////////////////////////////////////////////////////////////////// 
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    public LinearEquationSolver gaussJord() 
    { 
        LinearEquationSolver ret = new LinearEquationSolver(rows,cols,M); 
 
        for(int i=0;i<rows;i++){ 
 
            // first find first non-zero coefficient 
            int j=0; 
            while(ret.M[i][j] == (double)0){ 
                j++; 
                if(j==cols) 
                    break; 
            } 
 
            // if this row is all zeros just skip on to next row 
            if(j==cols) 
                continue; 
 
            // set leading one 
            ret = ret.mulRow( i, 1.0/ret.M[i][j]); 
 
            //set zeros above leading one 
            if(i!=0) 
                for(int k=i-1; k>=0; k--) 
                    ret=ret.addMulRow(i,k,-1.0*ret.M[k][j]); 
 
            //set zeros below leading one 
            for(int k=i+1; k<rows; k++) 
                ret=ret.addMulRow(i,k,-1.0*ret.M[k][j]); 
 
        } // end for loop 
        return ret; 
    } 
 
    ////////////////////////////////////////////////////////////////////////// 
 // Output the entire matrix as a String object. 
 ////////////////////////////////////////////////////////////////////////// 
    public String toString() 
    { 
        String string = ""; 
  if(rows<40){ 
         for(int i=0;i<rows;i++){ 
               for(int j=0; j<cols; j++){ 
                  string += customFormat("00.00", M[i][j]) + "     "; 
     } 
             string += "\n"; 
          } 
          return string; 
  } 
  else{ 
   return("Output matrix is too large to display in text box.\n"+ 
     "See output file for data.\n\n"); 
  } 
    } 
 
 ////////////////////////////////////////////////////////////////////////// 
 // This method creates a DecimalFormat object for formatting the file 
 // output string.  It returns a string formatted to the specified decimal 
 // precision. 
 ////////////////////////////////////////////////////////////////////////// 
 private String customFormat(String pattern, double value ) 
 { 
       DecimalFormat myFormatter = new DecimalFormat(pattern); 
       String output = myFormatter.format(value); 
  return(output); 
    } 
} 
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/* 
 * Painter Class 
 * 
 * 
 *************************************************************************** 
 * 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 24, 2002 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Popup Graphics Window Class 
 * 
 **************************************************************************/ 
package graphics; 
 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
 
//--------------------------------------------------------------------------- 
public class Painter extends JFrame 
{ 
 private int rows, cols; 
 private double[][] N; 
 Color col[]={  Color.blue, 
     Color.green, 
     Color.lightGray, 
     Color.magenta, 
     Color.pink, 
     Color.red, 
     Color.orange, 
     Color.yellow}; 
 
//--------------------------------------------------------------------------- 
 public Painter(int rows, int cols, double[][]N) 
 { 
  super("Contour Plot Window"); 
  setBackground(Color.white); 
  this.rows=rows; 
  this.cols=cols; 
  this.N=N; 
  setSize(rows, cols); 
  repaint(); 
  show(); 
 } 
 
//--------------------------------------------------------------------------- 
 public void paint(Graphics g) 
 
 { 
  double max=getMax(); 
  double min=getMin(); 
  double interval=(max-min)/7.0; 
 
   if(min<0.0){ 
    for(int i=0; i<rows; i++){ 
    for(int j=0; j<cols; j++){ 
     N[i][j]=N[i][j]+(0.0-min); 
    } 
   } 
  } 
  if(rows<100){ 
   for(int i=0; i<rows; i++){ 
    for(int j=0; j<cols; j++){ 
     g.setColor(col[((int)((N[i][j]-min)/interval))]); 
     g.drawLine(i,j,i,j); 
    } 
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   } 
  } 
  else{ 
   for(int i=0; i<rows; i++){ 
    for(int j=0; j<cols; j++){ 
     g.setColor(col[((int)((N[i][j]-min)/interval))]); 
     g.drawLine(i,j,i,j); 
    } 
   } 
  } 
 
 } 
//--------------------------------------------------------------------------- 
 private double getMax() 
 
 { 
  double max=N[0][0]; 
  for(int i=0; i<rows; i++){ 
   for(int j=0; j<cols; j++){ 
    if(N[i][j]>max){max=N[i][j]; 
    } 
   } 
  } 
  return(max); 
 } 
//--------------------------------------------------------------------------- 
 private double getMin() 
 
 { 
  double min=N[0][0]; 
  for(int i=0; i<rows; i++){ 
   for(int j=0; j<cols; j++){ 
    if(N[i][j]<min){min=N[i][j]; 
    } 
   } 
  } 
  return(min); 
 } 
//--------------------------------------------------------------------------- 
} 
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/* 
 * InputPainter Class 
 * 
 * 
 *************************************************************************** 
 * 
 * 
 * Course:   ECSE 6990 
 * Instructor:  Dr. William Randolph Franklin 
 * Date:      December 24, 2002 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Popup Graphics Window Class 
 * 
 **************************************************************************/ 
package graphics; 
 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
 
//--------------------------------------------------------------------------- 
public class InputPainter extends JFrame 
{ 
 private Image img; 
 
//--------------------------------------------------------------------------- 
 public InputPainter(Image img, int width,int height) 
 { 
  super("Image Window"); 
  setBackground(Color.white); 
  setSize(width, height); 
  this.img=img; 
  repaint(); 
  show(); 
 } 
 
//--------------------------------------------------------------------------- 
 public void paint(Graphics g) 
 
 { 
  g.drawImage(img, 0, 0, null); 
 } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* 
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Appendix 3  C++ Code Modules 

 
 
/* Course:   CSCI6980 
* Instructor:  Dr. Franklin 
* Date:   February 14, 2003 
* Student:   John Childs 
* 
*********************************************************************** 
* 
* Master's Project: 
* IODataManager 
* 
* This is the root function for the SparseSystem. 
 **********************************************************************/ 
 
#include "SparseSystem.h" 
 
int main( ) 
{ 
 SparseSystem sparseSystem; 
 return (0); 
} 
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/* 
 * Declarations for SparseSystem.h. 
 * 
 * 
 *************************************************************************** 
 * 
 * Course:   CSCI6980 
 * Instructor:  Dr. Franklin 
 * Date:   February 14, 2003 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Master's Project: 
 * SparseSystem 
 * 
 * This class is the main C++ class for converting an elevation grid 
 * file to a MATLAB sparse index file. 
 * 
 * Note:  it is not possible to instantiate IODataManager from the heap. 
 * If this is done (by declaring a pointer and then instantiating with 
 * the 'new' operator) it is not possible to write to the output file 
 * using the overloaded stream injection operator '<<', as in 
 * outfile<<somenumber.  This appears to be a bug because the extraction 
 * operator '>>' works OK in this case, and both work when the object 
 * is instantiated from the stack instead of the heap. 
 ***************************************************************************/ 
 
#ifndef sparse_system_h 
#define sparse_system_h 
#include<iostream>  
#include<stdio.h> 
#include "IODataManager.h" 
#include "AllocationManager.h" 
#include "ComputationManager.h" 
#include<time.h> 
 
using std::endl; 
 
class SparseSystem 
 
{ 
 
public: 
        SparseSystem(); 
        ~SparseSystem(); 
         
private: 
    AllocationManager *allocationManager;  
    ComputationManager *computationManager;  
    void containerMethod(void);    
    int** indexHandle; 
    double* vectorHandle; 
    int** inputHandle; 
    int elevationRows, elevationColumns; 
    int nzn; 
    int indexRows; 
    int indexColumns; 
    int vectorColumns; 
    clock_t start, end; 
}; 
#endif 
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#include "SparseSystem.h" 
IODataManager ioDataManager; 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Constructor                         // 
/////////////////////////////////////////////////////////////////////////// 
 
SparseSystem::SparseSystem(){ 
 cout<<"in the SparseSystem constructor"<<endl; 
 allocationManager=new AllocationManager; 
 computationManager=new ComputationManager; 
 containerMethod(); 
}; 
 
/////////////////////////////////////////////////////////////////////////// 
// Destructor                        // 
/////////////////////////////////////////////////////////////////////////// 
 
SparseSystem::~SparseSystem(){ 
 allocationManager->deAllocate(inputHandle, elevationRows); 
 allocationManager->deAllocateRHS(vectorHandle); 
}; 
 
/////////////////////////////////////////////////////////////////////////// 
// This method calls the other methods.             // 
/////////////////////////////////////////////////////////////////////////// 
 
void SparseSystem::containerMethod(void){ 
 
   /////////////////////////////////////////////////////////////////////// 
 // Write a greeting banner.                          // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.writeBanner(); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Get the elevaton grid rows and columns.           // 
 /////////////////////////////////////////////////////////////////////// 
 
 elevationRows=ioDataManager.getRows(); 
 elevationColumns=ioDataManager.getColumns(); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Open an input file.  The file to be opened is determined by       // 
 // the first argument.  In this case getInputFile() returns a     // 
 // reference to the input file declared in IODataManager         // 
 // ioDataManager.                            // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.openInputFile( ioDataManager.getInputFile(),  
         ioDataManager.getInputFileBuffer()); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Open an output file.  The file to be opened is determined by    // 
 // the first argument.  In this case getIndexFile() returns a     // 
 // reference to the index file declared in IODataManager         // 
 // ioDataManager.                            // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.openIndexFile( ioDataManager.getIndexFile(),  
         ioDataManager.getIndexFileBuffer()); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Open another output file.  The file to be opened is determined by // 
 // the first argument.  In this case getVectorFile() returns a     // 
 // reference to the b vector file declared in IODataManager      // 
 // ioDataManager.                            // 
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 /////////////////////////////////////////////////////////////////////// 
 
 
 ioDataManager.openVectorFile( ioDataManager.getVectorFile(),  
         ioDataManager.getVectorFileBuffer()); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Allocate an rows row by columns column array of ints from the    // 
 // heap. The array pointer is declared in allocationManager.  The    // 
 // particular array pointer is specified by the first argument.  In  // 
 // this case it is the pointer returned by getInputArray, i.e. the   // 
 // pointer to the array that will hold the input elevation data.    // 
 /////////////////////////////////////////////////////////////////////// 
 
 inputHandle=allocationManager->allocate(allocationManager->getInputArray(), 
              elevationRows, elevationColumns); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Read the input file into the input array.               // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.readArray(ioDataManager.getInputFile(), inputHandle,  
       elevationRows, elevationColumns); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Count the number of non zero nodes in the input file.         // 
 /////////////////////////////////////////////////////////////////////// 
 
 nzn=computationManager->nonzeroNodes( inputHandle,  
           elevationRows, elevationColumns); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Compute the number of rows in the index array.           // 
 /////////////////////////////////////////////////////////////////////// 
 
 indexRows=computationManager->numberIndexRows( elevationRows,  
             elevationColumns, nzn); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Compute the number of columns in the index array.          // 
 /////////////////////////////////////////////////////////////////////// 
 
 indexColumns=computationManager->numberIndexColumns(); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Allocate a rows row by columns column array of ints from the    // 
 // heap. The array pointer is declared in allocationManager.  The    // 
 // particular array pointer is specified by the first argument.  In  // 
 // this case it is the pointer returned by getIndexArray, i.e. the   // 
 // pointer to the array that will hold the MATLAB sparse index.    // 
 // The function returns the pointer (and not the array I hope)     // 
 // because it is needed for subsequent array access.                 // 
 /////////////////////////////////////////////////////////////////////// 
 
 indexHandle=allocationManager->allocate(allocationManager->getIndexArray(), 
           indexRows, indexColumns); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Fill the indexArray with all zeros.                       // 
 /////////////////////////////////////////////////////////////////////// 
 
 indexHandle=computationManager->allZeros( indexHandle,  
            indexRows, indexColumns); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Compute the index file coefficients and place them in the         // 
 // indexArray.                                                       // 
 /////////////////////////////////////////////////////////////////////// 
 
 start=clock(); 
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 indexHandle=computationManager->computeUpperLeft( indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeUpperRight( indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeLowerLeft( indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeLowerRight( indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeLeft(  indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeRight(  indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeUpper(  indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeLower(  indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeInside(  indexHandle,  
              elevationRows,  
              elevationColumns); 
 
 indexHandle=computationManager->computeLowerBlock( inputHandle,  
              indexHandle,  
              elevationRows,  
              elevationColumns); 
 end=clock(); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Write run statistics to console.                                  // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.runStatistics( nzn, indexRows, indexColumns, start, end,  
         computationManager->getEquations()); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Write indexArray to file                                          // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.writeArray( ioDataManager.getIndexFile(),  
        indexHandle, indexRows, indexColumns); 
 
 
 /////////////////////////////////////////////////////////////////////// 
 // Deallocate the big index array because it is no longer needed.    // 
 /////////////////////////////////////////////////////////////////////// 
 
 allocationManager->deAllocate(indexHandle, indexRows); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Allocate a rows row by columns column array of ints from the    // 
 // heap. The array pointer is declared in allocationManager.  The    // 
 // particular array pointer is specified by the first argument.  In  // 
 // this case it is the pointer returned by getVectorArray, i.e. the  // 
 // pointer to the array that will hold the MATLAB RHS vector.     //  
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 // Note: the number of RHS vector rows is the same as the index      // 
 // matrix rows.                                                      // 
 /////////////////////////////////////////////////////////////////////// 
 
 vectorHandle=allocationManager->allocateRHS(allocationManager-> 
            getVectorArray(),  
            indexRows); 
 
 /////////////////////////////////////////////////////////////////////// 
 // Compute RHS vector.                                            // 
 /////////////////////////////////////////////////////////////////////// 
  
 vectorHandle=computationManager->zeroRHS( vectorHandle,  
            ((elevationRows *  
            elevationColumns)  
            + nzn)); 
 
 vectorHandle= computationManager->computeRHS( vectorHandle,  
             inputHandle,  
             elevationRows,  
             elevationColumns,  
             computationManager-> 
             computeSparseRows 
             (elevationRows,  
             elevationColumns)); 
 
 /////////////////////////////////////////////////////////////////////// 
 // And finally, write it to file.  Destructor handles remaining      // 
 // deallocation chores.                        // 
 /////////////////////////////////////////////////////////////////////// 
 
 ioDataManager.writeRHSArray(ioDataManager.getVectorFile(),  
        vectorHandle, ((elevationRows *  
        elevationColumns) + nzn)); 
} 
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/* Course:   CSCI6980 
 * Instructor:  Dr. Franklin 
 * Date:      February 14, 2003 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Master's Project: 
 * IODataManager 
 * 
 * This class is the IO helper class for SparseSystem. 
 ***************************************************************************/ 
 
#ifndef io_data_manager_h 
#define io_data_manager_h 
#include<iostream>  
#include<conio.h>  
#include <fstream.h> 
#include<iomanip.h> 
#include<time.h> 
 
 
using std::endl; 
 
class IODataManager 
 
{ 
private: 
  ifstream inputFile; 
  ofstream indexFile; 
  ofstream bFile; 
  char inputFileBuffer[40]; 
  char indexFileBuffer[40];  
  char bFileBuffer[40]; 
 
public: 
        IODataManager(); 
        ~IODataManager(); 
  ifstream& openInputFile(ifstream&, char*); 
  ofstream& openIndexFile(ofstream&, char*); 
  ofstream& openVectorFile(ofstream&, char*); 
 
 
  void writeBanner(void); 
  ifstream& getInputFile(void); 
  ofstream& getIndexFile(void); 
  ofstream& getVectorFile(void); 
 
  char* getInputFileBuffer(void); 
  char* getIndexFileBuffer(void); 
  char* getVectorFileBuffer(void); 
 
 
  int getOneint(ifstream&); 
  void writeOneint(int, ofstream&); 
  void writeArray(ofstream&, int**, int, int); 
  void writeRHSArray( ofstream&, double*, int); 
 
  void dumpArray( int**, int, int); 
  void readArray( ifstream&, int**, int, int); 
 
  int getRows(void); 
  int getColumns(void); 
 
  void runStatistics(int, int, int, clock_t, clock_t, int); 
      
}; 
#endif 
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#include "IODataManager.h" 
 
/////////////////////////////////////////////////////////////////////////// 
// Constructor                                 // 
/////////////////////////////////////////////////////////////////////////// 
 
IODataManager::IODataManager(){ 
 cout<<"in IODataManager constructor."<<endl; 
}; 
 
/////////////////////////////////////////////////////////////////////////// 
// Destructor.  Closes all files.                    // 
/////////////////////////////////////////////////////////////////////////// 
 
IODataManager::~IODataManager(){ 
 indexFile.close(); 
 inputFile.close(); 
 bFile.close(); 
}; 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes the greeting banner.                  // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::writeBanner(void) 
{ 
 cout<<endl; 
 cout<<" *************************************************"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *           Welcome to SparseSystem.            *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *   The program accepts as input an ASCII tab   *"<<endl; 
 cout<<" *   separated elevation contour grid and        *"<<endl; 
 cout<<" *   computes the MATLAB sparse index file and   *"<<endl; 
 cout<<" *   the corresponding RHS vector for the        *"<<endl; 
 cout<<" *   Franklin over-determined Laplacian          *"<<endl; 
 cout<<" *   algorithm.                                  *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *   Note: you must specify the number of rows   *"<<endl; 
 cout<<" *   and columns for the elevation grid file     *"<<endl; 
 cout<<" *   when prompted.  If you make a mistake in    *"<<endl; 
 cout<<" *   specifying them, the program will at best   *"<<endl; 
 cout<<" *   produce a bad output file or at worst       *"<<endl; 
 cout<<" *   overflow an array and cause a segment       *"<<endl; 
 cout<<" *   violation error.                            *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *   If you are lucky, this will only cause      *"<<endl; 
 cout<<" *   the program to terminate.                   *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *************************************************"<<endl<<endl; 
 cout<<"Press any key to continue"<<endl; 
 getch(); 
} 
 
////////////////////////////////////////////////////////////////// 
// This function opens the elevation file for input in binary // 
// mode.  Returns a reference that can be forwarded to other    // 
// helper classes               // 
////////////////////////////////////////////////////////////////// 
 
ifstream& IODataManager::openInputFile( ifstream& someFile,  
          char inputFileBuffer[]) 
{ 
  
LABL: cout<<endl<<"********************************************************"<<endl; 
  cout<<"\nInput the elevation grid file name.\n"; 
  cout<<"\nThe correct file will look like '<filename>.txt'"<<endl; 
  cout<<"Please type in the complete file name including"; 
  cout<<"the directory path\n"; 
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  cout<<"for example: c:\\inputfile.txt\n"; 
  cout<<"*******************************************************"<<endl<<endl; 
 
  cin.get(inputFileBuffer,40); //extra read to work 
  cin.ignore(100, '\n');   //around console bug. 
 
  cin.get(inputFileBuffer,40); 
  cin.ignore(100, '\n'); 
  someFile.open(inputFileBuffer, ios::binary); 
  if(!someFile) 
  { 
   cout<<"**Cannot open"<<inputFileBuffer<<"**"<<endl; 
   cout<<"Please try again."<<endl<<endl; 
   goto LABL; 
  } 
  return(someFile); 
} 
 
 
////////////////////////////////////////////////////////////////// 
// This function opens the index file for output in binary   // 
//mode.                            // 
////////////////////////////////////////////////////////////////// 
 
ofstream& IODataManager::openIndexFile( ofstream& otherFile,  
          char outputFileBuffer[]) 
{ 
 
LABL:  cout<<endl<<"********************************************************"<<endl; 
   cout<<"\nInput the name of the output index file\n"; 
   cout<<"\nPlease type in the complete file name including"; 
   cout<<" the directory path\n"; 
   cout<<"for example: c:\\outfile.dat\n"; 
   cout<<"********************************************************"<<endl<<endl; 
 
   cin.get(outputFileBuffer,40); 
   cin.ignore(100, '\n'); 
   otherFile.open(outputFileBuffer, ios::binary); 
   if(!otherFile) 
   { 
    cout<<"**Cannot open"<<outputFileBuffer<<"**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
    goto LABL; 
   } 
   return(otherFile); 
} 
 
 
////////////////////////////////////////////////////////////////// 
// This function opens the b vector file for output in binary  // 
// mode.                              // 
////////////////////////////////////////////////////////////////// 
 
ofstream& IODataManager::openVectorFile( ofstream& otherFile,  
           char outputFileBuffer[]) 
{ 
 
LABL:  cout<<endl<<"********************************************************"<<endl; 
   cout<<"\nInput the name of the output b vector file\n"; 
   cout<<"\nPlease type in the complete file name including"; 
   cout<<" the directory path\n"; 
   cout<<"for example: c:\\bfile.m\n"; 
   cout<<"********************************************************"<<endl<<endl; 
 
   cin.get(outputFileBuffer,40); 
   cin.ignore(100, '\n'); 
   otherFile.open(outputFileBuffer, ios::binary); 
   if(!otherFile) 
   { 
    cout<<"**Cannot open"<<outputFileBuffer<<"**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
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    goto LABL; 
   } 
   return(otherFile); 
} 
 
////////////////////////////////////////////////////////////////// 
// This function gets the number of rows in the input elevation // 
// matrix. Some people would frown on this code, for no        // 
// logical reason.  It works.             // 
////////////////////////////////////////////////////////////////// 
 
int IODataManager::getRows(void) 
{ 
int rows; 
 
LABL: cout<<"\n\nInput the number of rows in the elevation file\n\n"; 
   cin>>rows; 
   if(rows<=0) 
   { 
    cout<<"**rows must be > 0**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
    goto LABL; 
   } 
   return(rows); 
} 
 
////////////////////////////////////////////////////////////////// 
// This function gets the number of columns in the input      // 
// elevation matrix.                        // 
////////////////////////////////////////////////////////////////// 
 
int IODataManager::getColumns(void) 
{ 
int columns; 
 
LABL: cout<<"\n\nInput the number of columns in the elevation file\n\n"; 
   cin>>columns; 
   if(columns<=0) 
   { 
    cout<<"**columns must be > 0**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
    goto LABL; 
   } 
   return(columns); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a reference to the inputFile              // 
/////////////////////////////////////////////////////////////////////////// 
 
ifstream& IODataManager::getInputFile(void) 
{ 
 return(inputFile); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a reference to the indexFile              // 
/////////////////////////////////////////////////////////////////////////// 
 
ofstream& IODataManager::getIndexFile(void) 
{ 
 return(indexFile); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a reference to the bFile                  // 
/////////////////////////////////////////////////////////////////////////// 
 
ofstream& IODataManager::getVectorFile(void) 
{ 
 return(bFile); 
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} 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a pointer to the inputFileBuffer             // 
/////////////////////////////////////////////////////////////////////////// 
 
char* IODataManager::getInputFileBuffer(void) 
{ 
 return(inputFileBuffer); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a pointer to the outputFileBuffer             // 
/////////////////////////////////////////////////////////////////////////// 
 
char* IODataManager::getIndexFileBuffer(void) 
{ 
 return(indexFileBuffer); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function gets a pointer to the vectorFileBuffer             // 
/////////////////////////////////////////////////////////////////////////// 
 
char* IODataManager::getVectorFileBuffer(void) 
{ 
 return(bFileBuffer); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function reads a int from the input file stream               // 
/////////////////////////////////////////////////////////////////////////// 
 
int IODataManager::getOneint(ifstream& inputFile) 
{ 
 int tempint; 
 inputFile>>tempint; 
 return(tempint); 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Function the contents of a file into an array                 // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::readArray( ifstream& inputFile, int** inputArray,  
         int rows, int columns) 
{ 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   inputFile>>inputArray[i][j]; 
  } 
 } 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes a int to the output file stream               // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::writeOneint(int outint, ofstream& outputFile) 
{ 
 cout<<"writing "<<outint<<" to output file"<<endl; 
 outputFile<<outint; 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes the entire contents of an array to the specified  // 
// output file in MATLAB sparse matrix index file format.  This fomat    // 
// is suitable for conversion to a MATLAB sparse matrix using the        // 
// command spconvert().  A newline (\n) is inserted at the end of every  // 
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// row. Formatting is field width=10, precision=0 (no decimals since all // 
// elements are expected to be integers.                  // 
//                                                                       // 
// This method must be redefined in order to output the dat in other     // 
// formats.                                            // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::writeArray( ofstream& outputFile, int** outputArray,  
        int rows, int columns) 
{ 
 cout<<"writing sparse matrix coefficient index file"<<endl<<endl; 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   outputFile<<setw(10)<<setprecision(0)<<setiosflags(ios::fixed) 
             <<outputArray[i][j]; 
  } 
  outputFile<<"\n"; 
 } 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes the RHS array to the specified file.                  // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::writeRHSArray( ofstream& outputFile, double* outputArray,  
        int rows) 
{ 
 cout<<"writing RHS vector file"<<endl<<endl; 
 outputFile<<"b=[\n"; 
 for(int i=0; i<rows; i++) 
 { 
   
  outputFile<<setw(10)<<setprecision(5)<<setiosflags(ios::fixed) 
             <<outputArray[i]; 
  outputFile<<"\n"; 
 } 
  outputFile<<"]"; 
 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes the entirre contents of an array to console.    // 
// For diagnostic purposes.                      // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::dumpArray( int** outputArray,  
        int rows, int columns) 
{ 
 cout<<"writing to output file"<<endl; 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   std::cout<<outputArray[i][j]; 
   std::cout<<"  "; 
  } 
  std::cout<<"\n"; 
 } 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes statistics for the run.               // 
/////////////////////////////////////////////////////////////////////////// 
 
void IODataManager::runStatistics( int nzn,  
         int indexRows,  
         int indexColumns,  
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         clock_t start,  
         clock_t end,  
         int equations) 
{ 
 cout<<endl; 
 cout<<"********************************************************"<<endl; 
 cout<<"non zero nodes is:  "<<nzn<<endl; 
 cout<<"index rows is:  "<<indexRows<<endl; 
 cout<<"index columns is:  "<<indexColumns<<endl; 
 cout<<endl<<"Total CPU time is:  "<<end-start<<" CPU units"<<endl; 
 cout<<endl<<"Total CPU time is:  "<<setw(10)<<setprecision(5)<< 
    (float)((end-start)/CLK_TCK)<<" seconds"<<endl<<endl; 
 cout<<"The number of equations computed is:  "<< 
        equations<<endl; 
 cout<<"********************************************************"<<endl<<endl; 
} 
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/* 
 * Declarations for AllocationManager.h. 
 * 
 * 
 *************************************************************************** 
 * 
 * Course:   CSCI6980 
 * Instructor:  Dr. Franklin 
 * Date:   February 14, 2003 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Master's Project: 
 * AllocationManager 
 * 
 * This class is the C++ helper class for allocating and 
 * otherwise managing the large arrays. 
 ***************************************************************************/ 
 
#ifndef allocation_manager_h 
#define allocation_manager_h 
#include<iostream>  
 
using std::endl; 
 
class AllocationManager 
 
{ 
 
public: 
        AllocationManager(); 
        ~AllocationManager(){}; 
  int** allocate( int **, int rows, int columns); 
  void deAllocate( int **, int); 
 
  int** getIndexArray(void); 
  double* getVectorArray(void); 
  int** getInputArray(void); 
 
 
  int getIndexArrayElement(int**,int, int); 
  void setIndexArrayElement(int**, int, int, int); 
  void setVectorArrayElement( double*, int, int); 
  double* allocateRHS( double*, int); 
  void deAllocateRHS( double*); 
 
 
 
private: 
  int** indexArray; 
        double* vectorArray; 
  int** inputArray; 
 
 
}; 
#endif 
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#include "AllocationManager.h" 
 
/////////////////////////////////////////////////////////////////////// 
// Constructor                             // 
/////////////////////////////////////////////////////////////////////// 
 
AllocationManager::AllocationManager(){ 
 std::cout<<"in AllocationManager constructor"<<endl; 
 
}; 
        
/////////////////////////////////////////////////////////////////////// 
// Function allocates int arrays for row X column sized arrays.      // 
/////////////////////////////////////////////////////////////////////// 
 
int** AllocationManager::allocate( int **inputArray,  
          int rows, int columns) 
{ 
 inputArray=new int*[rows]; 
 for (int n = 0; n < rows; n++) 
 { 
  inputArray[n] = new int[columns]; 
 } 
 return(inputArray); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function allocates int arrays for row X 1 sized arrays.           // 
/////////////////////////////////////////////////////////////////////// 
 
double* AllocationManager::allocateRHS( double *inputArray,  
          int rows) 
{ 
 inputArray=new double[rows]; 
 return(inputArray); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function deallocates int arrays for row X column sized arrays.    // 
/////////////////////////////////////////////////////////////////////// 
 
void AllocationManager::deAllocate( int **inputArray, int rows) 
{ 
 for (int n = 0; n < rows; n++) 
 { 
  delete[] inputArray[n]; 
 } 
 delete[]inputArray; 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function deallocates int arrays for row X column sized arrays.    // 
/////////////////////////////////////////////////////////////////////// 
 
void AllocationManager::deAllocateRHS( double *inputArray) 
{ 
 delete[]inputArray; 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function returns a pointer to the indexArray.                     // 
/////////////////////////////////////////////////////////////////////// 
 
int** AllocationManager::getIndexArray(void) 
{ 
 return(indexArray); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function returns a pointer to the vectoArray.                     // 
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/////////////////////////////////////////////////////////////////////// 
 
double* AllocationManager::getVectorArray(void) 
{ 
 return(vectorArray); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function returns a pointer to the inputArray.                    // 
/////////////////////////////////////////////////////////////////////// 
 
int** AllocationManager::getInputArray(void) 
{ 
 return(inputArray); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function sets the i,j index of the indexArray                     // 
/////////////////////////////////////////////////////////////////////// 
 
void AllocationManager::setIndexArrayElement( int** indexArray,  
            int i, int j, int value) 
{ 
 indexArray[i][j]=value; 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function sets the i,j index of the vector Array                   // 
/////////////////////////////////////////////////////////////////////// 
 
void AllocationManager::setVectorArrayElement( double* vectorArray,  
            int i, int value) 
{ 
 vectorArray[i]=value; 
} 
 
 
/////////////////////////////////////////////////////////////////////// 
// Function returns the value at the i,j index of the indexArray     // 
/////////////////////////////////////////////////////////////////////// 
 
int AllocationManager::getIndexArrayElement( int** indexArray,  
            int i, int j) 
{ 
 return(indexArray[i][j]); 
} 
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/* 
 * Declarations for ComputationManager.h. 
 * 
 * 
 *************************************************************************** 
 * 
 * Course:   CSCI6980 
 * Instructor:  Dr. Franklin 
 * Date:   February 14, 2003 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Master's Project: 
 * ComputationManager 
 * 
 * This class is the C++ helper class for computing the sparse index matrix  
 * array and the b vector array. 
 ***************************************************************************/ 
 
#ifndef computation_manager_h 
#define computation_manager_h 
#include<iostream>  
 
#define INDEXCOLUMNS 3; 
#define VECTORCOLUMNS 1; 
 
//using std::cout; 
using std::endl; 
 
class ComputationManager 
{ 
 
public: 
        ComputationManager(); 
        ~ComputationManager(){}; 
  void computeEdgeNodes(void); 
  int nonzeroNodes(int**, int, int); 
  int numberIndexRows(int, int, int); 
  int numberIndexColumns(void); 
  int numberVectorColumns(void); 
  int getEquations(void); 
 
  int** computeUpperLeft(int**, int, int); 
  int** computeUpperRight(int**, int, int); 
  int** computeLowerLeft(int**, int, int); 
  int** computeLowerRight(int**, int, int); 
  int** allZeros(int**, int, int); 
  int** computeLeft(int**, int, int); 
  int** computeRight(int**, int, int); 
  int** computeUpper(int**, int, int); 
  int** computeLower(int**, int, int); 
  int** computeInside(int**, int, int); 
  int** computeLowerBlock(int**, int**, int, int); 
  double*  computeRHS(double*, int**, int, int, int); 
  int   computeSparseRows(int, int); 
  double*   zeroRHS(double*, int); 
 
 
 
private: 
  int equationCounter; 
  int sparseRows; 
   
}; 
#endif 
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#include "ComputationManager.h" 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Constructor                                 // 
/////////////////////////////////////////////////////////////////////////// 
 
ComputationManager::ComputationManager():equationCounter(0), sparseRows(0){ 
 std::cout<<"in ComputationManager constructor"<<endl; 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Zero out the index matrix.                          // 
/////////////////////////////////////////////////////////////////////////// 
 
int** ComputationManager::allZeros(int** inputArray, int rows, int columns){ 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   inputArray[i][j]=0; 
  } 
 } 
 return(inputArray); 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Find the number of non zero nodes                     // 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::nonzeroNodes(int** inputArray, int rows, int columns){ 
 int nonZeroCounter=0; 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   if(inputArray[i][j]>10e-06) 
    nonZeroCounter=nonZeroCounter+1; 
  } 
 } 
 
 return(nonZeroCounter); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute indexRows, the number of rows in the MATLAB index array.   // 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::numberIndexRows(int rows, int columns, int nonZeroElevations){ 
 int indexRows=0; 
 indexRows=(((4*3) + ((rows-2)*4)*2 + ((columns-2)*4)*2 + ((rows-2)*(columns-2))*5)) + 
nonZeroElevations; 
 std::cout<<"nonZeroElevations is:  "<<nonZeroElevations<<endl; 
 
 return(indexRows); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute indexColumns, the number of columns in the MATLAB index array.// 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::numberIndexColumns(void){ 
 int indexColumns; 
 indexColumns=INDEXCOLUMNS; 
 return(indexColumns); 
} 
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/////////////////////////////////////////////////////////////////////////// 
// Get the number of equations inserted into indexArray           // 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::getEquations(void){ 
 return(equationCounter); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute indexColumns, the number of columns in the MATLAB RHS vector  // 
// array.                                // 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::numberVectorColumns(void){ 
 int vectorColumns; 
 vectorColumns=VECTORCOLUMNS; 
 return(vectorColumns); 
} 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the upper left node in the        // 
// elevation grid.                           // 
/////////////////////////////////////////////////////////////////////////// 
 
 
int** ComputationManager::computeUpperLeft(int** indexMatrix, int rows, int columns){ 
 
 int keyColumn; 
 int rightColumn; 
 int lowerColumn; 
 for(int i=1; i<=1; i++) 
 { 
  for(int j=1; j<=1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*rows + j); 
   rightColumn=keyColumn+1; 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-2; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 
 return(indexMatrix);    
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the upper right node in the       // 
// elevation grid.                           // 
/////////////////////////////////////////////////////////////////////////// 
 
 
int** ComputationManager::computeUpperRight(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int lowerColumn; 
 int leftColumn; 
 
 for(int i=1; i<=1; i++) 
 { 
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  for(int j=columns; j<=columns; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*rows + j); 
   leftColumn=keyColumn-1; 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-2; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the lower left node in the        // 
// elevation grid.                           // 
/////////////////////////////////////////////////////////////////////////// 
 
 
int** ComputationManager::computeLowerLeft(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int rightColumn; 
 int upperColumn; 
 
 for(int i=rows; i<=rows; i++) 
 { 
  for(int j=1; j<=1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   rightColumn=keyColumn+1; 
   upperColumn=((i-2)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-2; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the lower right node in the       // 
// elevation grid.                           // 
/////////////////////////////////////////////////////////////////////////// 
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int** ComputationManager::computeLowerRight(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int leftColumn; 
 int upperColumn; 
 
 for(int i=rows; i<=rows; i++) 
 { 
  for(int j=columns; j<=columns; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   leftColumn=keyColumn-1; 
   upperColumn=((i-2)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-2; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the left boundary.        // 
/////////////////////////////////////////////////////////////////////////// 
 
int** ComputationManager::computeLeft(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int upperColumn; 
 int lowerColumn; 
 int rightColumn; 
 
 for(int i=2; i<=rows-1; i++) 
 { 
  for(int j=1; j<=1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   rightColumn=keyColumn+1; 
   upperColumn=((i-2)*columns + j); 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-3; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
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   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the right boundary.        // 
/////////////////////////////////////////////////////////////////////////// 
 
int** ComputationManager::computeRight(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int upperColumn; 
 int lowerColumn; 
 int leftColumn; 
 
 for(int i=2; i<=rows-1; i++) 
 { 
  for(int j=columns; j<=columns; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   leftColumn=keyColumn-1; 
   upperColumn=((i-2)*columns + j); 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-3; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the upper boundary.        // 
/////////////////////////////////////////////////////////////////////////// 
 
int** ComputationManager::computeUpper(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int rightColumn; 
 int lowerColumn; 
 int leftColumn; 
 
 for(int i=1; i<=1; i++) 
 { 
  for(int j=2; j<=columns-1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*rows + j); 
   leftColumn=keyColumn-1; 
   rightColumn=keyColumn+1; 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
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   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-3; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the lower boundary.        // 
/////////////////////////////////////////////////////////////////////////// 
 
int** ComputationManager::computeLower(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int rightColumn; 
 int upperColumn; 
 int leftColumn; 
 
 for(int i=rows; i<=rows; i++) 
 { 
  for(int j=2; j<=columns-1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   leftColumn=keyColumn-1; 
   rightColumn=keyColumn+1; 
   upperColumn=((i-2)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-3; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the inside nodes.           // 
/////////////////////////////////////////////////////////////////////////// 
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int** ComputationManager::computeInside(int** indexMatrix, int rows, int columns){ 
 int keyColumn; 
 int rightColumn; 
 int upperColumn; 
 int leftColumn; 
 int lowerColumn; 
 
 for(int i=2; i<=rows-1; i++) 
 { 
  for(int j=2; j<=columns-1; j++) 
  { 
   sparseRows=sparseRows+1; 
   keyColumn=((i-1)*columns + j); 
   leftColumn=keyColumn-1; 
   rightColumn=keyColumn+1; 
   upperColumn=((i-2)*columns + j); 
   lowerColumn=((i)*columns + j); 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=keyColumn; 
   indexMatrix[equationCounter][2]=-4; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=leftColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=rightColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=upperColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
 
   indexMatrix[equationCounter][0]=sparseRows; 
   indexMatrix[equationCounter][1]=lowerColumn; 
   indexMatrix[equationCounter][2]=1; 
   equationCounter=equationCounter+1; 
  } 
 } 
 return(indexMatrix); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the matrix coefficients for the lower block of the            // 
// sparse matrix.  This section corresponds to the equations of the form:// 
// zi=ei.                                        // 
/////////////////////////////////////////////////////////////////////////// 
 
 
int** ComputationManager::computeLowerBlock(int** inputMatrix, int**indexMatrix, int 
rows, int columns){ 
 int keyColumn; 
 for(int i=0; i<rows; i++) 
  for(int j=0; j<columns; j++) 
  { 
   if(inputMatrix[i][j] != 0) 
   { 
    sparseRows=sparseRows+1; 
    keyColumn=((i-1+1)*columns + j+1); 
    indexMatrix[equationCounter][0]=sparseRows; 
    indexMatrix[equationCounter][1]=keyColumn; 
    indexMatrix[equationCounter][2]=1; 
    equationCounter=equationCounter+1; 
   } 
  } 
 return(indexMatrix); 
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} 
 
/////////////////////////////////////////////////////////////////////////// 
// Zero out the RHS array.                          // 
/////////////////////////////////////////////////////////////////////////// 
 
double* ComputationManager::zeroRHS(double*vectorMatrix, int rows){ 
  
 for(int i=0; i<rows; i++) 
  vectorMatrix[i]=0; 
 return(vectorMatrix); 
} 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the sparseRows: input to computeRHS.                 // 
/////////////////////////////////////////////////////////////////////////// 
 
int ComputationManager::computeSparseRows(int rows, int columns){ 
  
 int sparseRows=rows * columns; 
 return(sparseRows); 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Compute the RHS vector.                          // 
/////////////////////////////////////////////////////////////////////////// 
 
double* ComputationManager::computeRHS(double* vectorMatrix, int**inputMatrix, int rows, 
int columns, int sparseRows){ 
  
 for(int i=0; i<rows; i++) 
  for(int j=0; j<columns; j++) 
  { 
   if(inputMatrix[i][j] != 0) 
   { 
    vectorMatrix[sparseRows]=inputMatrix[i][j]; 
    sparseRows=sparseRows+1; 
   } 
  } 
 return(vectorMatrix); 
} 
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/* 
 * Declarations for ASCII2TGA.cpp                  
 * 
 * 
 *************************************************************************** 
 * 
 * Course:      CSCI6980 
 * Instructor:  Dr. Franklin 
 * Date:      April 4, 2003 
 * Student:   John Childs 
 * 
 *************************************************************************** 
 * 
 * Master's Project: 
 * ASCII2TGA 
 * 
 * This class converts a plain ASCII elevtion file to TGA format. 
 ***************************************************************************/ 
 
 
#include <stdio.h> 
#include <conio.h> 
#include <iostream.h> 
#include <fstream.h> 
 
class ascii2tga 
{ 
 private: 
 
    typedef unsigned char BYTE; 
 void OpenForOutput(ofstream& , char[40]); 
 void OpenForInput(ifstream&, char[40]); 
 void Write_Banner(void); 
 void allocate(unsigned char**, int , int); 
 void de_allocate(unsigned char**, int); 
 
 void get_data(int, int); 
 int getRows(void); 
 int getColumns(void); 
 void setup_array(int, int); 
 void readArray( ifstream& inputFile, unsigned char** inputArray,  
         int rows, int columns); 
 
 void WriteHeaderData(ofstream&, int, int); 
 void Write_to_File(ofstream& outfile1, 
          int r, int c, 
          unsigned char**some_array); 
 
 
 void ContainerFunction(void); 
 
 unsigned char** raw_array; 
 char infileBuffer[40]; 
 
 char outfileBuffer[40]; 
    int rows, columns; 
 BYTE lowByte; 
 BYTE highByte; 
 BYTE leader_id, tempchar; 
 unsigned int integer1; 
 
 typedef struct _TgaHeader 
 { 
  BYTE IDLengthByte; 
  BYTE ColorMapTypeByte; 
  BYTE ImageTypeByte; 
  BYTE CMapStartByte1; 
  BYTE CMapStartByte2; 
  BYTE CMapLengthByte1; 
  BYTE CMapLengthByte2; 
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  BYTE CMapDepthByte; 
  BYTE XOffsetByte1; 
  BYTE XOffsetByte2; 
  BYTE YOffsetByte1; 
  BYTE YOffsetByte2; 
  BYTE WidthByte1; 
  BYTE WidthByte2; 
  BYTE HeightByte1; 
  BYTE HeightByte2; 
  BYTE PixelDepthByte; 
  BYTE ImageDescriptorByte; 
 }  TGAHEADER; 
 
 ifstream infile1; 
 ofstream outfile1; 
 public: 
 
 ascii2tga(); 
 ~ascii2tga(); 
}; 
 
/////////////////////////////////////////////////////////////////////////// 
// Function definition section. 
/////////////////////////////////////////////////////////////////////////// 
 
/////////////////////////////////////////////////////////////////////////// 
// Constructor at the present is the area where the test functions are   // 
// called.                                                               // 
/////////////////////////////////////////////////////////////////////////// 
 
ascii2tga::ascii2tga(void) 
 
{ 
 highByte = 0; 
 lowByte = 0; 
 integer1 = 0; 
 rows = 0; 
 columns = 0; 
 Write_Banner(); 
 ContainerFunction(); 
} 
 
///////////////////////////////////////////////////////////////// 
// Destructor cleans up and shuts down.         // 
///////////////////////////////////////////////////////////////// 
 
ascii2tga::~ascii2tga(void) 
{ 
 infile1.close(); 
 outfile1.close(); 
 if(raw_array) de_allocate(raw_array, rows); 
// if(processed_array) de_allocate2 (processed_array, rows); 
// if(mirror_array) de_allocate2 (mirror_array, rows); 
 cout<<endl<<"Press any key to continue"<<endl; 
 getch(); 
 cout<<endl<<"Done"<<endl; 
} 
 
///////////////////////////////////////////////////////////////// 
// This function opens a file for output in binary mode.    // 
///////////////////////////////////////////////////////////////// 
 
void ascii2tga::OpenForOutput(ofstream& otherFile, char outfileBuffer[]) 
{ 
 
LABL3: cout<<"\n\nInput the name of the output TGA file\n\n"; 
   cout<<"Please type in the complete file name including"; 
   cout<<" the directory path\n"; 
   cout<<"for example: a:\\outfile.tga\n\n"; 
   cin.get(outfileBuffer,40); 
   cin.ignore(100, '\n'); 
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   otherFile.open(outfileBuffer, ios::binary); 
   if(!otherFile) 
   { 
    cout<<"**Cannot open"<<outfileBuffer<<"**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
    goto LABL3; 
   } 
} 
 
///////////////////////////////////////////////////////////////// 
// This function opens the ascii file for input in binary mode.// 
// After checking that the file has opened OK, it closes.   //  
// The file must be opened and closed as needed using          // 
// 'infileBuffer[]'.                                           // 
///////////////////////////////////////////////////////////////// 
 
void ascii2tga::OpenForInput( ifstream& someFile, char somefileBuffer[]) 
{ 
 
LABL3: cout<<"\n\nInput the ASCII file.\n\n"; 
 
   cout<<"Please type in the complete file name including"; 
   cout<<"the directory path\n"; 
   cout<<"for example: c:\\infile.txt\n\n"; 
   cin.get(infileBuffer,40); 
   cin.ignore(100, '\n'); 
   cin.get(infileBuffer,40); //extra read to work 
   cin.ignore(100, '\n');   //around console bug. 
   someFile.open(somefileBuffer, ios::binary); 
   if(!someFile) 
   { 
    cout<<"**Cannot open"<<somefileBuffer<<"**"<<endl; 
    cout<<"Please try again."<<endl<<endl; 
    goto LABL3; 
   } 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function allocates integer arrays for row X column sized arrays.  // 
/////////////////////////////////////////////////////////////////////// 
 
void ascii2tga::allocate( unsigned char **tempArray, int rows, int columns) 
{ 
 for (int j = 0; j <= rows; j++) 
  tempArray[j] = new unsigned char[columns]; 
} 
 
 
/////////////////////////////////////////////////////////////////////// 
// Function de-allocates integer arrays size row X column.           // 
/////////////////////////////////////////////////////////////////////// 
 
void ascii2tga::de_allocate(unsigned char **tempArray, int rows) 
{ 
 for (int i = 0; i <= (rows);  i++) 
   delete[] tempArray[i]; 
 delete[] tempArray; 
} 
 
/////////////////////////////////////////////////////////////////////////// 
// Function writes the greeting banner.          // 
/////////////////////////////////////////////////////////////////////////// 
 
void ascii2tga::Write_Banner(void) 
{ 
 cout<<" *************************************************"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *           Welcome to SDTSTGA2.                *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *   This program copyright 2003 John Childs     *"<<endl; 
 cout<<" *            Granby, CT USA                     *"<<endl; 
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 cout<<" *          www.terrainmap.com                   *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *   The program accepts as input an ASCII text  *"<<endl; 
 cout<<" *   file and converts them to                   *"<<endl; 
 cout<<"        *   8-bit TGA files suitable for input to       *"<<endl; 
 cout<<"        *   many GIS programs.                          *"<<endl; 
 cout<<" *                                               *"<<endl; 
 cout<<" *************************************************"<<endl<<endl; 
 cout<<"  Press any key to continue"<<endl; 
 getch(); 
} 
 
 
/////////////////////////////////////////////////////////////////////////// 
// Function the contents of a file into an array           // 
/////////////////////////////////////////////////////////////////////////// 
 
void ascii2tga::readArray( ifstream& inputFile, unsigned char** inputArray,  
         int rows, int columns) 
{ 
 int temp; 
 for(int i=0; i<rows; i++) 
 { 
  for(int j=0; j<columns; j++) 
  { 
   inputFile>>temp; 
   inputArray[i][j]=(unsigned char)temp;; 
  } 
 } 
} 
 
 
/////////////////////////////////////////////////////////////////////// 
// Function gets the rows from the console.                          // 
//                                                                   // 
/////////////////////////////////////////////////////////////////////// 
 
int ascii2tga::getRows(void) 
{ 
    
 int rows; 
 cout<<"\n\nInput the rows\n"; 
    cin>>rows; 
 return(rows); 
    
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function gets the columns from the console.                       // 
//                                                                   // 
/////////////////////////////////////////////////////////////////////// 
 
int ascii2tga::getColumns(void) 
{ 
    
 int columns; 
 cout<<"\n\nInput the columns\n"; 
 cin>>columns; 
 return(columns); 
} 
 
/////////////////////////////////////////////////////////////////////// 
// Function sets up the arrays.                                      // 
/////////////////////////////////////////////////////////////////////// 
 
void ascii2tga::setup_array(int number_rows, int number_columns) 
{ 
 raw_array = new unsigned char*[number_rows+1]; 
 allocate(raw_array, number_rows, number_columns); 
// processed_array = new  unsigned char*[number_rows+1]; 
// allocate2(processed_array, number_rows, number_columns); 
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// mirror_array = new  unsigned char*[number_rows+1]; 
// allocate2(mirror_array, number_rows, number_columns); 
} 
 
 
 
///////////////////////////////////////////////////////////////// 
// This function writes a header section of the file.     // 
///////////////////////////////////////////////////////////////// 
 
void ascii2tga::WriteHeaderData(ofstream& outfile1, int r, int c) 
{ 
 TGAHEADER Header = 
 { 
  0x00, 
  0x01, 
  0x01, 
  0x00, 
  0x00, 
  0x00, 
  0x01, 
  0x24, 
  0x00, 
  0x00, 
  0x00, 
  0x00, 
  0x00, 
  0x00, 
  0x00, 
  0x00, 
  0x08, 
  0x00 
 }; 
 
 Header.WidthByte1 = (unsigned char)(c & 0x00ff); 
 Header.WidthByte2 = (unsigned char)((c & 0xff00) >> 8); 
 Header.HeightByte1 = (unsigned char)(r & 0x00ff); 
 Header.HeightByte2 = (unsigned char)((r & 0xff00) >> 8); 
 
 outfile1<<Header.IDLengthByte;      //start eighteen bytes of header data 
 outfile1<<Header.ColorMapTypeByte; 
 outfile1<<Header.ImageTypeByte; 
 outfile1<<Header.CMapStartByte1; 
 outfile1<<Header.CMapStartByte2; 
 outfile1<<Header.CMapLengthByte1; 
 outfile1<<Header.CMapLengthByte2; 
 outfile1<<Header.CMapDepthByte; 
 outfile1<<Header.XOffsetByte1; 
 outfile1<<Header.XOffsetByte2; 
 outfile1<<Header.YOffsetByte1; 
 outfile1<<Header.YOffsetByte2; 
 outfile1<<Header.WidthByte1; 
 outfile1<<Header.WidthByte2; 
 outfile1<<Header.HeightByte1; 
 outfile1<<Header.HeightByte2; 
 outfile1<<Header.PixelDepthByte; 
 outfile1<<Header.ImageDescriptorByte; 
 
 
 for(int i=0; i<=255; i++)  // Palette section of 256 ordered triples 
 { 
  char temp = (char)(i & 0x00ff); 
  outfile1.put(temp); 
  outfile1.put(temp); 
  outfile1.put(temp); 
 } 
} 
///////////////////////////////////////////////////////////////// 
// This function maps a 16-bit unsigned integer (0-65,536)    // 
// to 8-bit TGA format.                   // 
//                  // 
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// Note: a glitch occurs when a pixel equals the minimum    // 
// elevation value in the dataset.  This was fixed by      // 
// detecting these values and incrementing them from 0x00 to   // 
// 0x01.  The function also writes the processed data to the   // 
// output file.                 // 
///////////////////////////////////////////////////////////////// 
 
void ascii2tga::Write_to_File(ofstream& outfile1, 
          int r, int c, 
          unsigned char**some_array) 
{ 
 
  for (int i=0; i<r; i++) 
  { 
   for(int j=0; j<c; j++){ 
    outfile1.put(some_array[i][j]); 
   } 
  } 
} 
 
 
///////////////////////////////////////////////////////////////// 
// This function contains all the calls.              // 
///////////////////////////////////////////////////////////////// 
 
void ascii2tga::ContainerFunction(void) 
{ 
 
 rows=getRows(); 
 columns=getColumns(); 
    OpenForInput( infile1, infileBuffer); 
 setup_array(rows, columns); 
 readArray(infile1, raw_array, rows, columns); 
 infile1.close(); 
 infile1.close(); 
 OpenForOutput(outfile1, outfileBuffer); 
 WriteHeaderData(outfile1, rows, columns); 
 cout<<"rows is:  "<<rows<<endl; 
 cout<<"columns is:  "<<columns<<endl; 
 Write_to_File(outfile1, rows, columns, raw_array); 
 outfile1.close(); 
 
} 
 
///////////////////////////////////////////////////////////////// 
// Main part of the program.             // 
///////////////////////////////////////////////////////////////// 
 
int main() 
{ 
 ascii2tga Mydem;      
 return(0); 
} 
 
 


