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DETECTING AND EVALUATING LAND COVER CHANGE IN THE EASTERN HALF 

OF EAST TIMOR (1972 – 2011) 

ABSTRACT 
 

Land use / land cover (LULC) change detection based on remote sensing (RS) data 
is an important source of information for various decision support systems. In East 
Timor where forest plays a key role in sustaining communities’ livelihoods the 
information derived from LULC change detection is invaluable to the conservation, 
sustainable development and management of forest resources.    
 
To assess the patterns of land cover change, as a result of complex socio-economic 
factors, satellite imagery and image processing techniques can be useful. This study 
is concerned with identifying change in land use and land cover types in East Timor 
between 1972 and 2011, using satellite images from Landsat MSS, TM and ETM+ 
sensors. Seven major cover types were identified in this study including forest, 
mixed rangeland, grassland, farmland, built-up areas, bare soil and water. A 
combination of NDVI differencing, supervised and unsupervised classification was 
used to derive final classification maps. Due to the lack of ground truth data, further 
processing were performed to improve the final classification maps by applying 
rationality change test.  
 
Post-classification comparison change detection technique was used to assess 

categorical changes between 1972 and 2011. The results highlight a significant 

level of deforestation due to uncontrolled illegal logging and increase in farmland, 

built-up areas, as well as bare soil. This decline has had considerable impact on the 

livelihoods of rural communities. As the new nation of Timor-Leste establishes 

itself, it must consider its current stock and distribution of natural resources to 

ensure that development efforts are geared towards sustainable outcomes. Without 

this information historical patterns of resource consumption, development efforts 

may, unwittingly, lead to continuing decline in forest resources. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Research focus on land use and land cover (LULC) change gained prominence after 

the realization that land cover change affects climate (Lambin et al., 2003). Since 

then, many studies have been conducted around the world to understand the 

causes, impacts and rates of land cover change. It is an important variable in 

studying the dynamic changes that are continuously occurring on the earths’ 

surface. In addition, it has become a major issue in many of the current strategies 

for managing natural resources and monitoring environmental damages. The 

development of the concept of LULC has greatly increased research on land use and 

land cover change, thus providing an accurate evaluation of the spread and health 

of the world's forests, grasslands, and agricultural resources. 

 

Worldwide deforestation is still alarmingly high (FAO, 2010). A recent study by 

Goldewijk and Ramankutty (2004), where they assessed historical land cover data, 

showed that forest has decreased from 50-62 million km2 in 1700 to 43-53 million 

km2 in 1990. This reduction is due to the expansion in land used for crops and 

ranching (Goldewijk and Ramankutty, 2004).  Many of these phenomena occur in 

developing countries where agricultural expansion has caused reduction in forest 

cover over long periods of time. In Brazil, for instance, the European exploitation of 

forest for rubber plantation followed by sugar cane production caused the 

reduction in Araucaria forest from 25 million ha to only 445000 ha. The 

introduction of new cash crops to Brazil in 19th century contributed to the 

conversion of millions of hectares of forest into coffee plantation, adding more 

pressure to the remaining forest. The consequences of this deforestation have 



2 
 

included increased erosion problems on hill slope and disturbance to drainage 

systems (Goldewijk and Ramankutty, 2004). 

 

The examples above are just some of the many cases of causes and impacts of land 

use/land cover changes. Obviously, deforestation in smaller countries may not be 

heard of. However, the impacts are the same in the way that they affect 

communities. Often times, the LULC change in an area is an outcome of complex 

socio-economic condition in which human activities play a central role. Forest as a 

resource is becoming scarce because of the immense agricultural expansion and 

demographic pressure. Understanding this dynamic requires a tremendous amount 

of resources in terms of time, finances, and the right technology, not only because 

the problems are complex but also because it is geographically extensive in nature.  

 

Thus, satellite images and aerial photography offer the most cost effective method 

for land cover mapping and change detection throughout the world, both for bi-

temporal and multi-temporal analysis (Ioannis and Meliadis., 2011). Over the years, 

remote sensing in the form of aerial photography has been an important source of 

LULC information. Ioannis and Meliadis (2011) state that this approach provides 

several advantages: (1) the synoptic view of large geographic areas, (2) the digital 

form of the data facilitating more efficient analysis and (3) land cover maps can be 

generated at considerably less cost than by other methods. The cost of aerial 

photography acquisition and the interpretation of cover types is prohibitively 

expensive for extensive geographic areas, thus, a common alternative is to acquire 

the needed information from freely available digital satellite imagery such as 

Landsat TM and ETM+. 

Hence, Remote Sensing (RS) and Geographic Information System (GIS) are now 

providing new tools for better LULC studies. The collection of remotely sensed data 

facilitates the synoptic analysis of Earth’s surface and its change at local, regional 

and global scales over time. 
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1.2. Statement of the Problem and Justification 

Like many other poor and developing countries around the world, forests play a 

major role in sustaining agricultural-based communities’ livelihoods in East Timor. 

The majority of people in East Timor practices shifting cultivation, by clearing and 

burning of lands and cutting of forests and bushes. Coupled with wildfires and 

excessive logging activity, this has caused a serious environmental problem 

(Sandlund et al, 2001; Bouma and Kobryn, 2004). These traditional agricultural 

practices have been around since at least 19th century and studies have indicated 

its intensification in recent years (Jeus et al., 2012). Yet, there has not been many 

studies to understand the impact of such a practice on forest and so public 

awareness of its impact is very low. This clearly poses serious challenges for the 

task of efficient planning and management of the environment, which is often 

constrained by insufficient information on the rates of land cover/use change.    

As a relatively new nation, East Timor is facing great challenges and developmental 

issues in many areas. One of the key areas concerns the dynamic of land use and 

changing land cover situation which has not been given enough attention since the 

country’s independence in 2002.  Previous studies on land use/cover change in 

East Timor have only looked at the phenomena between two different dates (i.e. bi-

temporal analysis). For instance, Bouma and Kobryn (2004) compared two 

classified Landsat images (1989 and 1999) of the western part of East Timor and 

found that the major vegetation cover types such as forest and woodland have 

declined in nine districts (Figure 1 and 2). Mapping projects, conducted through 

collaboration between public institutions and non-governmental agencies, have 

also produced some spatial data, but only for recent years. Although, findings from 

these studies have identified the common causes of environmental damages, and 

have initiated the development of some key environmental policies, they are still 

far from strengthening the public’s understanding of land cover dynamics.  
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Figure 1.1. Vegetation distribution in western part of East Timor in 1989. Source: Bouma and Kobryn 

(2004).  

 

Figure 1.2. Vegetation distribution in western part of East Timor in 1999. Source: Bouma and Kobryn 

(2004).  
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The limited availability of historical data (e.g., land use maps, topographic maps, 

aerial photos) in East Timor, the high cost of good quality data collection and 

information dissemination, as well as the limited number of trained personnel in 

remote sensing constrain East Timor’s ability to conduct LULC change detection 

studies, or environmental studies in general. This challenge needs to be addressed 

and overcome with viable solution. 

A multi-temporal analysis of land cover change is deemed valuable in this regards. 

By studying land use/cover change through multiple time stamps, a generalized 

understanding of causes of land use/cover change over a longer trajectory can be 

obtained. Freely available satellite data such as Landsat images can make it 

possible to carry out this kind of study and the result from such a study can add to 

the public’s knowledge the importance of spatial data and information for policy 

making 

1.3. Objective of the Study 

The aim of this study is to analyze and detect land cover change using multi-

temporal Landsat images covering the eastern half of East Timor from 1972 to 

2011. Specifically, the following questions will be used as guide in the study:  

 What are the extent and nature of vegetation distribution in the eastern half 

of East Timor? 

 How is the vegetation trend changing during the study period in respect to 

other cover types? 

 Can land cover and land use change be mapped with limited reference data? 

 Is there an alternative to assess the accuracy of change detection derived 

from limited reference data?  

Furthermore, specific tasks will be performed to help answer the above questions.  

 Calculate Normalized Difference Vegetation Index (NDVI) for all the 

observation dates (1972, 1987, 1996, 2000, 2005 and 2011) 
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 Map land use and land cover types in the study region using commonly used 

algorithm such as supervised classification and/or unsupervised 

classification techniques 

 Perform and combine NDVI differencing techniques with LULC map to 

improve image classification result 

 Improve the final classification using change rationality test 

 Perform change detection between all the different dates 

 Evaluation of change detection result 
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CHAPTER 2 

STUDY AREA AND DATASET 

2.1. Study area 

The study area is located in the eastern part of East Timor extending between 

E126°, S8.3° and E127.5°, S9.1°. It covers three districts, Baucau, Viqueque and 

Lautem (Figure 2.1). The topography of the region is highly varied characterized by 

hilly terrain and coastal plains. The highest point in the region, which is also the 

second highest point in East Timor, is mount Matebian (2335m). The rainfall 

distribution in the study area also varies. In Baucau, precipitation is well 

distributed in the hilly areas but less so near the coast. In Viqueque district rainfall 

is well distributed throughout the area. Sometimes the rainy season (wet season) in 

this area is longer than its dry period. According to the 1970 census by Portuguese 

government the population in the study area was 177688, approximately 29.3% of 

the total East Timor’s population (Costa Carvalho, 1970). The current population is 

estimated at 241517 people of which 83% live in rural areas (NSD, 2011).  

Agricultural land use in this region is predominant with Baucau and Viqueque 

among the four districts in East Timor that produce 75% of the country’s rice 

(Pederson and Arnerbeg, 1999). Another local product includes maize which is 

grown in tilled fields or with little cultivation under traditional slash and burn 

systems (Da Costa, 2003). Toward the eastern part of the study area is Lautem, the 

district with much less agricultural intensification. In the past, however Lautem had 

been an important livestock and fish producing area. A large portion of forested 

land in the study area is located in Lautem where the first National Park was 

established. This area is also home to 3 out of the 15 identified “important bird 

species” in East Timor (Mau, n.d.). Little is known about whether or not 

deforestation has threatened the natural habitat of these species.  
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Apart from the existence of deforestation in the area and the author’s familiarity of 

the area, one of the reasons for selecting this study area is because a similar study 

was already conducted on the western part of East Timor by Bouma and Kobryn 

(2004) from which these three districts were excluded. Therefore, this study can be 

used to enrich information regarding land use/cover change for the entire country 

of East Timor. 

 

Figure 2.1. Map of the study area 

2.2. Dataset 

This study spans a four decade time period—1970s, 1980s, 1990s, and 2000s. For 

the 1970s two Landsat MSS images from October 4 and October 23, 1972 were 

obtained to cover the entire study area. For the 1980s a Landsat TM image from 

September 8, 1987 was obtained. For the 1990s, a Landsat TM image from August 

15, 1996 was obtained. For the 2000s, the ETM+ image was obtained for the year 

2000 and 2011, while for the year 2005, the Landsat TM image was used (Table 

2.2.1 and 2.2.2). Ideally, data should be obtained from a satellite that acquires data 
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at the same time of day, being that all of the data is from Landsat that is not an 

issue. Images with corresponding anniversary dates, which are dates over time 

which correspond with season, month, and preferably weeks should be obtained 

because it helps minimize discrepancies in reflectance caused by seasonal 

vegetation fluxes and sun angle. However, often times anniversary dates are 

impossible to obtain because of the times that the sensor system passes over a 

particular area so the logical alternative is to find images of the area in the same or 

near to the same month or season (Jensen 2007) In addition, atmospheric 

conditions can also affect a sensor’s visibility as clouds tend to be persistent over a 

tropical island such as East Timor. These issues were taken into consideration and 

formed the basis for deciding the dataset for this study. All data was obtained from 

the USGS Global Visualization Viewer (GLOVIS). Table 1 and 2 shows the 

description of the data.  

 

The reference data utilized in this study is a topographic map of East Timor with 

the scale of 1:5000 and the 2000 land use map of East Timor. Both maps contain 

information of land cover types for the year 2000. The land use map was produced 

by the Ministry of Agriculture and Fisheries (MAF) using spot images with ground 

truth data.   

Year 
Date of 

acquisition 
Sensor Path Row 

1972 1972-Oct-23 

1972-Oct-4 

Landsat MSS 

Landsat MSS 

117 

166 

66 

66 

1987 1987-Sept-8 Landsat TM 109 66 

1996 1996-Aug-18 Landsat TM 109 66 

2000 2000-Sept-3 Landsat ETM+ 109 66 

2005 2005-Oct-11 Landsat TM 109 66 

2010* 2010-Aug-14 Landsat EMT+ 109 66 

2011 2011-Aug-17 Landsat ETM+ 109 66 

Table 2.2.1. Raw Landsat data used in this study  

*   used for gap filling the 2011 image 
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Reference data Date of production Source Scale 

Land use map of 

East Timor 
2000 

ALGIS, Ministry of 

Agriculture and Fisheries 

(MAF) 

NA 

Topographic map  2001 
Ministry of Justice of East 

Timor 
1:50000 

Table 2.2.2. Reference data  

 

Tools 

ArcGIS 10 

PANCROMA  
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CHAPTER 3  

LITERATURE REVIEW 

3.1. Remote sensing application  

Since the advent of the remote sensing satellite (Landsat 1) in 1972, many land 

cover and land use change studies started being conducted at varying levels. For 

instance, at local level, studies were conducted in various domains including 

landscape, agriculture, watershed management, forestry, and using data from 

various sensors such as Landsat, MODIS and AVHRR.  Masek et al (2000) used 

Landsat images acquired between 1973 and 1996 to study land use efficiency in the 

metropolitan area of Washington DC, USA.  By applying NDVI differencing and 

visual inspection of true urban growth, their study revealed that the Washington 

metropolitan area has expanded at a rate of 8.5 square miles every year.  

 

Doraiswamy et al, (2003) evaluated the integration of Landsat TM data into a crop 

growth model to simulate wheat yields in the semi-arid region of North Dakota, 

USA. Their study found similar result as the one reported by the county. Rahman et 

al (2004) used Landsat (MSS, TM and ETM+) images to detect changes in winter 

crops in Durgapur Upazilla, Bangladesh. Using the Maximum Likelihood Classifier 

(MLC), they found an increasing trend in winter crops 1977 and 2000 which is 

attributed to the increase in irrigation during winter season as well as population 

pressure in the area. Petit et al (2001) also used MLC for a change detection study 

in south-eastern Zambia, and reported an annual rate of 4.0% land cover change. 

Another study was conducted by Anderson et al (2012) using moderate resolution 

satellite imageries for the purpose of water resource management. Their study 

concluded that Landsat thermal imagery can improve our ability to monitor 

changes in water used due to changing climate and population growth.  
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At regional level, application of remote sensing has also engaged in a wide range of 

domains including deforestation, desertification and climate change among many 

other things. For instance, Symeonakis and Drake (2004) developed a system for 

monitoring desertification using four indicators (rainfall, vegetation cover, surface 

run-off and soil erosion) that were derived from continental-scale remotely sensed 

data. By combining theseindicators, they were able to identify areas under threat of 

desertification. Another example of regional level application of remote sensing 

study was the study on impacts of global warming in Arab region where MODIS 

images were used (Ghoneim, 2009). CORINE Land Cover Mapping is also among the 

many projects that entail regional collaboration to produce land cover maps based 

on the interpretation of satellite images (EEA, 2013). 

 

3.2. Change detection techniques 

Over the years, a number of change detection techniques have been developed and 

widely used for monitoring land use/land cover changes. Numerous researchers 

have discussed the strength and weaknesses of each of this technique (Singh, 1989; 

Nelson, 1983; Lu et al, 2004). These techniques can be broadly divided into two 

main categories: pre-classification spectral change detection and post-classification 

comparison techniques (Nelson, 1983; Singh, 1989, Coppin and Bauer, 1996). 

Previous studies have successfully employed many of these techniques in analyzing 

land cover change. Some of these studies have also focused on comparing the 

ability of various techniques to accurately identify areas of change.  

 

3.2.1. Pre-classification change detection technique  

The pre-classification change detection technique is also referred to as 

enhancement change detection. Generally, the pre-classification change detection 

has the ability to accurately identify areas of spectral changes (Singh, 1989). 

However, this technique requires additional analysis to determine the nature of the 

spectral changes and it also requires more accurate image normalization and co-
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registration. One of the most widely used change detection algorithm is image 

differencing. It is a technique by which images captured at different times, which 

are co-registered, are subtracted from one another to obtain unchanged areas. 

Basically, it subtracts the Digital Number (DN) values of one band in the first image 

from the corresponding DN value of the same band in the second image. The 

subtraction results in positive and negative values for areas that change between 

the two images and zero value for areas that do not change (Sohl, 1999). A critical 

element of using this technique is how to decide where to place the threshold for 

change in the differenced image (Singh, 1989). Additionally, it is also important to 

apply radiometric normalization to the images before conducting image 

differencing. Simplicity and straightforwardness are the strength of this technique 

(Lu et al, 2004). However, it is quite sensitive to miregistration and mixed pixels 

and it also lacks the information on the type of change that is occurring (Sohl, 1999; 

Lu et al, 2004).  

 

MacLeod and Congalton (1998) performed a quantitative comparison of change 

detection algorithms and reported that image differencing performed better in 

detecting changes in submerged aquatic vegetation, with an overall accuracy of 

78%. However, Sohl (1999) and Veettil (2012) showed that the image differencing 

technique was straightforward but on the expense of detailed information, and its 

implementation can get more complicated when applied to multiple bands, due to 

the difficulty of interpreting the colors of multi band false color composite. Hence, 

Sohl (1999) states the simplicity of image differencing is also its main weaknesses 

because it does not provide adequate explanation on the nature of the change.  

 

Similar to image differencing is the vegetation index differencing. This technique 

uses a data transformation shown to be related to green biomass where, for two 

different dates, a Normalized Difference Vegetation Index (NDVI) image is 

calculated and subtracted from one another to produce image showing areas of 
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change and no-change (Mas, 1999). The NDVI is calculated by NDVI = (NIR – 

RED)/(NIR + RED), where NIR represents near-infra red band response for a given 

pixel of and RED represents red band (Mass, 1999). This method is also widely 

used in land cover change studies (Pu et al, 2008; Masek et al, 2000).  

 

3.2.2. Post-classification comparison 

The post classification technique involves a comparative analysis of spectral 

classification of two independently classified maps (Mas, 1999). This technique has 

the advantage of providing direct information on the nature of land cover changes 

and it can be used with both supervised and unsupervised classifications. The main 

advantages of these techniques are that it minimizes atmospheric influences on the 

images, and also the sensor and environmental differences between multi-temporal 

images (Lu et al, 2004). This technique is capable of producing descriptive 

information on the type of changes that are occurring, and it does not necessarily 

require co-registration and radiometric normalization of input images. Lu et al 

(2005) states that the disadvantages of this technique are that it requires great 

amount of time and skills to produce classification, and that the accuracy of the 

change detection depends on the accuracy of the classified maps because any 

errors made in the classification are compounded into the change detection.  

 

Numerous studies have produced good results with post-classification comparison 

technique. Sohl (1999) reported accuracies of 96% for the identification of new 

forest land and 62% for new agricultural land using a post classification technique 

in a semi-arid environment. Guo et al (2010) also used post-classification 

comparison by which they obtained an accuracy of 89% in their study of land cover 

change to detect bushfire. Mersten and Lambin (2000) found a net reduction in 

forest cover between 1973 and 1996 in Cameroon using post-classification 

comparison technique. Furthermore, Sohl (1999) also noted the advantage of post-

classification technique to provide analysts with detailed descriptive comparison 
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between images. A comparative study of change detection techniques by Mas 

(1999) also showed a high accuracy by post-classification comparison technique 

which was attributed to the high accuracy of the classification of each individual 

image.  

 

While large number of studies has produced positive results with this technique, 

MacLeod and Congalton (1998) reported that the post classification comparison 

technique produced rather poor results compared to NDVI differencing, and they 

stated that this poor accuracy could be attributed to the errors from both 

classifications. In the review of change detection techniques Singh (1989) cited Toll 

et al (1980) by stating that the poor performance of post-classification comparison 

technique is partly due to the difficulty of producing image classifications that are 

comparable to one another.  With that said, there is no single image classifier or 

change detection technique that fits every situation. Often times, researchers 

perform comparison analysis of their performances and then decide to use the 

classifier or technique that produces the best result.  

 

3.3. Accuracy assessment  

Accuracy assessment, then, is an important step in image classification and change 

detection (Congalton and Green, 2008). A classified image or change detection map 

needs to be compared against reference data, assumed to be true, in order to assess 

its performance and quantify its accuracy. One of the common procedures in 

describing the accuracy of a classified map is by using a confusion matrix where a 

set of categories on a classified map and a reference map are plotted on a matrix 

from which descriptive measures can be obtained (Congalton and Green, 2008, 

Lillesand et al, 2004). Generally, a full accuracy assessment needs to include the 

report on User Accuracy, Producer Accuracy and indices such as Kappa (Congalton 

and Green, 2008). Pontius and Millones (2011), however, critically argued against 

the further use of Kappa index in accuracy analysis because it does not have useful 
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interpretation. Instead, they proposed the use of quantity disagreement and 

allocation disagreement to obtain useful summary of the accuracy.  Either way, 

accuracy assessment for a successful remote sensing project relies heavily on the 

reference data (Congalton and Green, 2008).  

 

In multi-temporal studies where data spans over a long period of time, obtaining 

reference data for multiple observation dates can be difficult. This certainly poses 

challenges for change detection studies especially in areas where land use/land 

cover information and reference data are of poor quality or even non-existent. This 

problem has been discussed by numerous researchers (Liu and Zhou, 2004; Baraldi 

et al, 2005; Foody, 2010) and while these authors recognize the utmost importance 

of reference data, they have also shown that change detection can be performed 

when the reference data are limited. Foody (2010) even concluded that it is 

possible to estimate the accuracy of change detection without ground data. Liu and 

Zhou (2004) on the other hand have proposed methodology for evaluating land 

cover change trajectories where a set of rules can be defined to evaluate the 

rationality of land cover change. This study will employ a slight modification of the 

rules proposed by Liu and Zhou (2004). 
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CHAPTER 4 

METHODOLOGY 

This section describes the methodology used in this study. First, various works in 

the preprocessing stage (gap-filling, radiometric and atmospheric correction) are 

described then followed by explanation of NDVI differencing technique and image 

classification procedures. Finally, the explanation on change rationality test for 

improving the final classification maps is presented. Figure 4.1 shows the main 

workflow of the methodology.  

 

Figure 4. The main workflow of the methodology 
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4.1. Image Pre-processing 

Prior to performing image classification it is important that the raw data are 

preprocessed and prepared in a proper way so that error due to the geometry of 

the earth, radiometric and atmospheric effects can be accounted for. The general 

procedure in the preprocessing stage is to apply geometric, radiometric and 

atmospheric correction. In this study the geometric correction was not applied to 

the satellite images because they were already georeferenced to UTM Coordinate 

System Zone 52S.  Similarly, the land use shapefile from ALGIS was also 

georeferenced. Thus, georeferencing was only performed for the scanned 

topographic map of the study area, which resulted in a root mean square error 

(RMSE) of 0.1123.  

 

In addition, prior to radiometric and atmospheric corrections, which is described in 

the following section, a Gap-filling was performed for Landsat image of 2011. This 

image of 2011 was captured by Landsat ETM+. Due to its faulty Scan Line Corretor 

(SLC) since 2003, the Landsat ETM+ sensor has been obtaining images of the 

earth’s surface in the SLC-Off mode (Scan Line Corrector). As a result, the image 

only has about 87% of their pixels causing gap effects. These gaps created a 

stripping effect along the edge of the image (Figure 4.1.1). Several procedures have 

been developed to fill in these gaps including the work by Zhang et al., (2007) and 

Scaramuzza et al., (2004). In this study the gap in the 2011 image was filled with 

another Landsat ETM+ image which was acquired on August 14, 2010 (Figure 

4.1.2). Each band in the 2011 image was filled with pixel information from its 

corresponding band in the 2010 image. Although the 2010 image also has gaps, it 

was possible to gap-fill the first image because the gaps in the images from two 

different dates are not necessarily in the exact same spot. It is important to note 

that the ideal procedure would be to use the image from the nearest month (e.g., 

September or October), however, due to the lack of cloud free image, the 2010 

image was used, assuming that between these 2010 and 2011 land cover had been 
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small enough to still make comparison with other decades using this data (Figure 

4.1.3). This process of gap-filling was executed in the PANCROMA software using 

the Hayes method. The Hayes method is a local optimization method where it uses 

a sliding window technique, with a defined size, to estimate the value in the gaps 

using values from other pixels that exist in the sliding windows (PANCROMA, 

2012).  

 

Figure 4.1.1. Landsat ETM+ 2011 band 5 with before gap filling 
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Figure 4.1.2. Landsat ETM+ 2010 band 5 used for filling the gaps in 2011 image 

 

 

Figure 4.1.3. The result of gap-filling procedure for 2011 image band 5 
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4.1.1.  Cloud Masking 

Clouds are a common feature found in all satellite images and they can affect image 

classification because they may cover large extensive area under study. The easiest 

way to deal with cloud cover is to include it in the classification as a separate class 

or by masking the clouds outs. Most Landsat data used in this study have a very 

minimum cloud cover. Yet, some clouds do exist and they were removed by using 

techniques proposed by Martinuzzi et al. (2007).  

 

The algorithm uses pixel information from band 1 (blue) and band 6 (thermal) to 

create the mask. Clouds are very reflective in the blue band and very cold in the 

thermal band. This method was chosen because it is an efficient and relatively 

simple algorithm to create cloud mask for Landsat images. A prior visual analysis 

was performed to identify the DN of clouds ranging from the minimum to 255. In 

band 1 (blue) clouds are very reflective such that their DN are very high. Thus by 

identifying pixel values where clouds appear thinner the mask was created where  

DNmin<DN of pixel in band 1 < 255. In the thermal band (6), clouds are colder and 

appear dark on the image. Hence, the mask was created for pixels where 1 >DN of 

pixels in band 1 <DNmax.  

 

By intersecting these two masks, and with an additional buffer of 3 pixels, final 

cloud masks were obtained for images that have cloud contamination (1996, 2000, 

2005). The masks were then used on the final classified maps to exclude pixels 

from images which did not contain clouds so that they can be compared with 

images that have clouds.   

 

4.1.2. Conversion to at-sensor radiance (         

When working with images data from multiple sensors and platforms it is 

necessary to convert them into a physically meaningful common radiometric scale 

(Chander et al., 2009). This is important because different sensors have different 



22 
 

calibration methods to scale, convert and store data. Radiometric calibration of 

MSS, TM and ETM+ sensors involves rescaling raw digital numbers (Q) transmitted 

from satellite to calibrated digital numbers (Qcal), which have the same 

radiometric scaling for all scenes processed on the ground for a specific period. 

Conversion from Qcal in Level 1 products back to at-sensor spectral radiance (Lλ) 

requires knowledge of the lower and upper limit of the original rescaling factors. 

The following equation is used to perform the Qcal-to-Lλ conversion for Level 1 

products: 

 

                                   (1) 

 

where 

                                             (2) 

 

                
              

                 
             (3) 

 

Therefore equation 1 can be rewritten as: 

 

                    (                                         (4) 

 

where 

   = spectral radiance at the sensor’s aperture [W/m2 sr µm)] 

     = quantized calibrated pixel value (DN) 

        = minimum quantized calibrated pixel value corresponding to       [DN] 

        = Maximum quantized calibrated pixel value corresponding to       [DN] 

       Spectral at-sensor radiance that is scaled to         [W/(m2 sr µm)] 

      = Spectral at-sensor radiance that is scaled to         [W(/m2 sr µm)] 

         = Band-specific rescaling gain factor [(W/(m2 sr µm))/DN] 

         = Band-specific rescaling bias factor [W/(m2 sr µm)] 
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Information of this rescaling factor for Landsat data are contained in the header file 

(.MTL). Figure 4.2. shows an example of rescaling factors for Landsat TM image 

used in the study. Complete rescaling factors and radiometric calibration 

coefficients for all the images can be seen in Appendix C.  

 

 

Figure 4.2. The rescaling factors contained in the product metadata of Landsat TM5 acquired on October 11, 

2005.  

  

4.1.3. Conversion to at-sensor Radiance (   -   ) 

Images acquired on different dates have different solar zenith angle, different 

Earth-Sun distance, and different exoatmospheric solar irradiance that arise from 

spectral band difference. Hence, they introduced scene-to-scene variability, which 

can be improved by further processing. This can be done by converting at-sensor 

radiance to exoatmospheric Top-of-Atmosphere (TOA) reflectance, also known as 

in-band planetary albedo. Chander et al. (2009) mentioned that the TOA reflectance 

helps remove the cosine effect of different solar zenith angle and compensates for 

different values of exoatmospheric solar irradiance. It also corrects for the 
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variation in the Earth-Sun distance between different data acquisition dates. The 

TOA reflectance of the Earth is computed according to the equation:  

   
       

           
          (5) 

where 

   = planetary TOA reflectance [unitless] 

  = Mathematical constant equal to ~3.14159 [unitless] 

   = Spectral radiance at the sensor’s aperture [W/m2 sr µm)] 

  = Earth-Sun distance [astronomical units] 

     = Mean exoatmospheric solar irradiance [W/m2 sr µm)] 

   = Solar zenith angle [degrees] 

 

4.1.4. Atmospheric correction by Dark-Object Subtraction (DOS) 

The atmosphere affects images by scattering, absorbing, and refracting light and 

these effects are wavelength dependent. Several methods are available to correct 

for this effect including the Dark-Object Subtraction (DOS) technique. The DOS 

atmospheric correction is an image-based technique, hence it does not require an 

in-situ measurement during the acquisition of satellite images (Chavez, 1988; 

Chavez, 1996). This technique assumes that there is high probability that there are 

at least a few pixels within an image which should be black (0% reflectance), for 

example, areas of shadow caused by topography or clouds in the image where the 

pixels should be completely dark. Ideally, an imaging system should not detect 

radiance at these shadow locations, and a DN value of zero should be assigned to 

them. However, because of the atmospheric scattering effect, these shadowed areas 

will not be completely dark and the sensor records a non-zero DN at these 

locations. The value of DN at this location is assumed to be the haze value and 

needs to be subtracted from the particular band to account for atmospheric 

scattering effect. Chavez (1996) also states the fact that there is only a few objects 
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on the Earth’s surface that are completely dark and so an assumption needs to be 

made that these objects have at least one-percent of reflectance.   

 

Therefore assuming that there are some dark objects whose reflectance are 

supposed to be around zero, then the minimum DN value need to be subtracted 

from all the pixels so that atmospheric effect can be removed from the entire image.  

 

Sobrino et al. (2004) express the path radiance (atmospheric scattering) as: 

                                                     (6) 

Where  

     is radiance that corresponds to a DN value for which the sum of all pixels with 

DN value lower or equal to this value is equal to the 0.01% of all the pixels from the 

image considered (Sobrino et al., 2004, p.437). This radiance value can be obtained 

using equation 4.  

    is the radiance of dark object assumed to have reflectance value of 0.01.  

 

Therefore,      and     can be expressed like the following: 

                                               (7) 

 

                                                     (8) 

 

And the path radiance can be obtained by substituting equations 7 and 8 into 

equation 6: 

                                                                              (9) 

 

Chavez (1996) computed the variables     ,       and       to be the following:   

     = 1 

     = 1 

      = 0 
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This is assuming the no atmospheric transmittance loss, and corrects for the 

spectral band solar irradiance and solar zenith angle, resulting in: 

 

So, by substituting these values into equation 9, the path radiance (atmospheric 

scattering) can be obtained by: 

                                                        (10) 

 

Finally, to obtain the surface reflectance of Landsat images equation 10 is 

substituted into equation 5 as expressed below: 

   
                

           
         (11) 

Where    is defined by equation 4,    is defined by equation 10,   is the Earth-Sun 

distance in astronomical units.       is obtained from Chander et al. (2009) and 

      is the cosine of solar zenith angle    reported in the images metadata file. The 

reflectance value should range between 0 and 1 and so values below and above this 

range were corrected. Any reflectance value below 0 was set to 0 and any 

reflectance value higher than 1 was set to 1. All the raw data used in this study 

were converted into radiance, reflectance and atmospherically corrected. Hence, 

they were comparable even though they were captured by different sensors at 

different times. 

 

4.1.5. Classification scheme 

In this study, a modified land use/class scheme, based on the Anderson’s scheme 

level I and II (Anderson et al., 1976) , the proposed land cover classes by the 

Ministry of Fisheries and Agriculture of East Timor (MAF, 2001) and the author’s a 

priori knowledge of the study area were used to defined land cover classes in the 

study area.  In total seven land use/cover classes were considered in this study. 

Description of these categories is listed below: 
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Forest. This class includes forested land that exists throughout the study area. 

Coniferous and deciduous forest belongs to this category. Coastal forest such as 

thick mangrove is also included in this category. This class was easily discriminated 

using False Color Composite of 432 and 542 of Landsat images.  

 

Mixed Rangeland: This class comprises of sparse woodland or scattered trees. 

Shrubs are also included in this class 

 

Grassland: This category includes savanna and land used for grazing.  

 

Farmland: This class primarily consists of lands used permanently for food 

production both commercial and non-commercial purposes. Rice fields, 

plantations, and non-irrigated land belong to this class.  

 

Settlements: This class includes small towns, villages, roads, airports and concrete 

structure, as identified by visual interpretation on the satellite images.  

 

Bare soil: This class consists of barren land, bare rocks, and soil that are exposed 

due to the burning of trees, and shifting cultivation. Note that farmland that is dry 

are not included in this class. 

 

Water: Lakes and rivers.  

4.2. Image Processing 

Image processing involves the manipulation and interpretation of digital images 

using computers (Lillesand et al., 2004). This step is performed in this study to 

differentiate forest cover among other covers for change detection. This is achieved 

through a combination of Normalized Difference Vegetation Index (NDVI) 

differencing and image classification. The following section explains these two 

methods. 
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4.2.1. Normalized Difference Vegetation Index (NDVI) 

In the image processing phase, an NDVI differencing technique is applied to identify 

pixels that change and don’t change between two different dates. The NDVI is 

derived from the red – near infrared reflectance ratio. The formula is based on the 

notion that that chlorophyll accumulating within leaves of healthy green vegetation 

absorb red wavelengths, whereas the mesophyll leaf structures and water within 

the leaf scatter near infrared. NDVI values, which are unitless, range from –1 to +1, 

where positive values yield high amounts of vegetation, both deciduous and 

otherwise, where negative values correspond to sparse or nonexistent vegetation, 

bare soil and clouds. For Landsat TM and ETM+, NDVI is defined by band4 – 

band3/band4 + band3, whereas for Landsat MSS, it is defined as band4 – 

band2/band4 + band2 (Jensen, 2005) 

 

NDVI differencing is a widely used technique in change detection studies (Masek et 

al., 2000,; Pu et al., 2008). Although Pu et al. (2008) used a linear model to perform 

normalization between images to account for radiometric differences between 

images, this was not necessary in this study because radiometric and atmospheric 

correction have been performed in the previous phase. Thus all the images were 

comparable to each other.  

 

After calculating NDVI for all the years, the difference between NDVI of one 

observation date to NDVI of another date was calculated to identify pixels that 

change and don’t change. This was performed by subtracting NDVI 1972 from NDVI 

1987 to obtain changes between NDVI of these two dates. Similarly, NDVI 1987 was 

subtracted from NDVI 1996, NDVI 1996 from NDVI 2000, NDVI 2000 from NDVI 

2005, and NDVI 2005 from NDVI 2011 to generate NDVI differences between those 

two image pairs.  
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Next, the NDVI differencing images were further processed by splitting pixels 

distribution above and below the mean into two parts, the decrease      and 

increase parts      (See Figure 4.2.1. for    and   ). Pixels with values above the 

mean of NDVI differencing image were treated as the index decrease part and 

pixels above the mean of the NDVI differencing image were treated as index 

increase part. Next, the mean (   and   ) and standard deviation (   and   ) for 

these two images were identified, where subscript   represents index decrease 

part and   represents index increase part (Pu et al., 2008). Pixels that change in the 

index decrease part were obtained by identifying their values that fall below 

        , and pixels that change in the index increase part were obtained by 

identifying their values that fall above       .   

 

Figure 4.2.1. Probability density function of NDVI differencing image. Source: Pu et al. (2008) 

 

The c refers to a range of coefficient (values between -1.8 and 0.4) that can be used 

to calculate different thresholds to show the best change/no change (Figure 

4.2.1.1). Ideally, the optimum c to determine threshold values is computed using 
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Kappa or other accuracy indices (Pu et al., 2008). However, due to the lack of 

ground-truth data, the threshold values were determined by visually inspecting 

maps that were produced using different coefficients. The visual inspection reveals 

that as c increases (small negative value) a lot of noise is introduced but 

information is lost as the value of c decreases (larger negative value). Hence, the 

optimum threshold values is found to be in the range of -0.6 and -0.2.  

 

Figure 4.2.1.1. Range of optimal c value. Source: Pu et al. (2008) 

 

4.2.2.  Image Classification 

The next step in the image processing phase is image classification. Two types of 

classification algorithms were employed, Maximum Likelihood (MLC) and Isodata 

Cluster. The MLC is an algorithm that quantitatively classifies pixels by evaluating 

both the variance and covariance of the categorical spectral response pattern 

(Lillesand et al., 2004). This is based on the assumption that similar features with 

similar spectral signature have a normal distribution and their statistical 

probability can be computed. It is a technique of supervised classification being 
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that the analyst defines training areas to train the algorithm, which then classify 

pixels based on their likelihood to belong to the defined class (CCRS, n.d.).  

 

Isodata cluster is a method of unsupervised classification that works by iteratively 

grouping cells into a user-defined number of distinct unimodal class (ESRI, 2010). 

The algorithm starts by arbitrarily assigning means (center) to cluster to which 

each cell with minimum distance belong. After the first iteration, the means are 

recalculated until the maximum number of iteration is reached.   

 

The MLC was used to classify the year 2000 image which serves as reference image 

for all the other images. A total of 100 samples were collected for forest, 100 

samples for mixed rangeland, 100 for farmland and 50 samples for bare soil. For 

built-up areas, grassland and water, 50 classes were collected for each of them. 

These samples were collected by visually interpreting the 2000 image using False 

and True color composites. After the classification an accuracy assessment was 

performed on the classified image of 2000 using the 2001 topographic and land use 

map as reference data from which samples were collected.  

 

Congalton and Green (2008)  stated that the general guideline “rule of thumb” 

regarding the sample size for of an accuracy assessment is to collect 50 samples for 

each class in a map that has a size of less than a million hectare and less than 12 

classes. For a much larger map, they suggested 75 to 100 samples points per class 

as this will ensure a balance between statistical validity and practicality (Congalton 

and Green, 2008, p.75). Hence, in this study, a total of 700 points were randomly 

collected from the image for the purpose of an accuracy assessment. This one time 

accuracy assessment is necessary not only because it is a fundamental requirement 

in a change detection study but also because the 2000 map serves as the reference 

for all the other observation dates.  
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For all the other images, the unsupervised classification with ISO Cluster algorithm 

was employed by assigning 30 classes. The clusters of pixels were then grouped 

based on the defined land use/cover categories. Interpretation of RGB images by 

False Color Composite (FCC) and True Color Composite (TCC) from each 

observation date was performed to assist in the assignment of the classes.  

 

The final classification maps were obtained by combining change/no change maps 

generated by NDVI differencing and maps generated from both supervised and 

unsupervised classification (see Figure 4.2.2). Afterwards, a 3 x 3 pixels majority 

filter was applied to all the classified maps to remove some of the speckled pattern 

(noise) of individual pixels. 
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Figure 4.2.2. Derivation of final classification maps for five acquisition dates (1972, 1987, 1996, 

2005 and 2005) by combining change/no change maps and classified maps from supervised and 

unsupervised methods 

 

4.2.3. Change rationality test 

To improve the final classification maps, it is necessary to understand whether or 

not some of the changes between pixels make sense. For instance, it is unlikely that 

built-up areas will change into forested land or farmland. Additionally, in tropical 

region such as East Timor, where deforestation occurs due primarily to shifting 

cultivation and expansion of farmland, change from farmland or bare soil to forest 

is very unlikely. Therefore, a rule can be established to assess the rationality of 
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changes between pixels. The following four rules have been used to perform this 

assessment.  

Let x be the number of detected categorical changes over six monitoring dates 

(1972–2011).   

      

where   =   means no change at all, and   =   means that the pixel of the cover type 

has undergone changes through every detection period.  Consider also that        = a 

specific cover type and     = a different cover type and T1 – T6 refers to six 

observation dates.  

Rule I: no change (x = 0), if a pixel is classified as the same land cover type 

throughout the six monitoring periods then it is ‘correctly’ classified.  

T1    T2     T3    T4    T5   T6 

                                                          Correct for all cover types.  

        Correct for all cover types.  

Rule II: One-time change (x = 1), if a pixel changes from one cover type to a 

different cover type for once, and once only, then it is classified as correct. 

However, there is an exception to pixels with cover type built-up area, bare soil and 

farmland. If a pixel is found to have changed from built-up area to different cover 

type, it is considered as a ‘reverse’ case and is classified as ‘incorrect’. In that case, 

the pixel failed Rule II and needs to be passed to the next test.  Similarly, a change 

of pixel with cover type farmland or bare soil to forest is also considered ‘incorrect.’  

                                                                                   

                                                                         Correct; incorrect if        = built-up areas 

                     Correct; incorrect if         = farmland / bare soil,

                                = forest    
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Rule III: ‘The rule of majority’, a pixel is considered majority class if it is classified 

as the same cover type for four times or more, irrespective of their order in 

between T1 and T6. This pixel is considered correct and the other two pixels that 

are incorrect will be reclassified similar to the correct one.  

                 = majority class 

                                     will be reclassified as  

 

Rule IV: this rule deals with all the pixels that failed all the previous tests above      

(x > 2). Pixels in this category are those that change multiple times between cover 

types but don’t retain majority. For example, a pixel in 1972 may be classified as 

forest, but grassland in 1987 and built-up in 2000. It is difficult to know whether or 

not this is a true land cover change and so they are considered ‘fuzzy’ pixels. Pixels 

in this category will be reclassified based on the information from 2000 image 

because this is the only reliable map.  

 

4.3. Post-classification change detection 

After the final maps are reclassified and improved through change rationality test, a 

post-classification comparison is performed to detect LULC change. This technique 

performs change detection in which comparison is made between independently 

classified images (Singh, 1989). Post classification comparison has the advantage to 

provide direct information on the nature of land cover change. To perform the 

change detection two maps were paired to calculate their categorical change. For 

instance, the map of 1972 was paired with 1987 to calculate how much of an area 

of a class in 1972 map had changed in the map of 1987. This procedure was 

performed in ArcGIS using the function ‘Tabulate Area’.   
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1.NDVI  

The NDVI calculations were obtained for all the observation dates (Figure 5.1.1). Visual 

analysis of the images shows that large proportions of healthy vegetation were located 

mostly in southern region of the study area. Toward the northern region, NDVI shows 

relatively low values. In 1972, however, high NDVI values were observed primarily in 

the western part of the study area. This is contrary to the distribution of vegetation in 

1987 where higher NDVI values shifted toward the eastern part of the island. Although 

from 1996 on, the INDVI map looks fairly similar, it’s apparent that the 2005 map 

shows less greenness compared to all other maps. See Appendix D for enlarged version 

of NDVI images. 

5.2.NDVI Differencing 

The results from NDVI differencing techniques were obtained for all the observation 

dates. After conducting visual inspection of NDVI differencing images with different c 

coefficients, the optimal threshold values for change/no change were determined. The 

change/no change map were generated using the optimum threshold values ranging from 

-0.6 to 0.2 (see Appendix A for change/no change maps). Table 5.2.1 shows the mean, 

standard deviation, and optimum threshold values for all the image pairs 

NDVI 

Differencing 

Index Decrease Index Increase Optimum 

c value 

Threshold 

Mean SD Mean SD Decrease Increase 

1972 – 1987 -0.662 0.323 -0.057 0.155 - 0.6 0.4682 0.036 

1972 – 1996 0.001 0.187 0.456 0.291 -0.2 -0.0384 0.5142 

1996 – 2000 -0.021 0.180 0.253 0.210 -0.2 -0.057 0.295 

2000 – 2005 -0.569 0.197 -0.192 0.177 -0.6 -0.6872 -0.0858 

2005 – 2011 0.142 0.176 0.547 0.200 -0.6 0.034 0.667 

Table 5.2.1. Thresholds of index decrease and increase for all NDVI differencing images 
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Figure 5.1.1. NDVI maps for all observation dates 
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5.3. Selection of coefficients 

Ideally, selection of the optimum threshold value is done by measuring its performance 

against some accuracy indices. However, due to the lack of ground data (reference data) 

in this study the selection of the optimum threshold value were done by visual inspection 

of each map generated using all the different c values. One of the techniques used in this 

study is by observing features in the image that is assumed to have a constant low (or 

high) index value throughout the study period and using it as a basis for helping in 

determining the threshold value.  For instance, feature such as airport rarely changes for 

long period of time and so the difference value for pixels around this area should be 

close to zero either above or below the mean. The c values for both the index decrease 

and increase parts were arbitrarily chosen so that they don’t include pixels that contain 

the feature’s information (Figure 5.3.1). Pixels of other features, assumed to have 

relatively constant zero value, were also used as indicators. Hence, the threshold values 

were selected by distinguishing true change (larger negative value) from noise (lower 

negative value).   

 

Figure 5.3.1. NDVI index decrease part shows large amount of noises due the selection of high c  value 

(smaller negative). The blue circle shows and airport runway  
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Figure 5.3.2. NDVI index decrease part shows minimum noise due to selection of low c value (larger 

negative).  

 

Figure 5.3.3. NDVI index decrease part using medium c value. Notice the reduction in the noise but 

enough change information are retained.  
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5.4. Image classification 

Conducting an accuracy assessment for a classified image is necessary especially if 

the image is to be used for further analysis. It is particularly important in post-

classification change detection analysis where the accuracy of the final change 

image depends on the accuracy of the independently classified images (Yuan et al., 

2005). In determining the accuracy of this image, 700 sample points were 

randomly distributed across the study area. The different land use/cover 

categories in the classified image were compared with the topographic map and 

land use map of East Timor for the year of 2000 by using the confusion matrix. The 

result shows an overall accuracy of 0.82% with a kappa index of 0.77 (Table 5.3.1). 

As mentioned in the methodology section, after conducting accuracy assessment, 

the 2000 map was used to classify images from other years for which NDVI 

differencing identified as no change. For pixels that NDVI differencing identified as 

change, they were classified using unsupervised method. Finally, these maps were 

improved by applying change rationality test. 

Categories 
Producer accuracy 

(%) 
User accuracy (%) 

Forest 90 82 

Mixed Rangeland 83 86 

Grassland 83 84 

Farmland 74 82 

Settlement 52 57 

Bare soil 78 73 

Water 86 86 

Table 5.3.1. One time accuracy assessment for 2000 image 

5.4.1. Change rationality test: Rule I 

The change rationality test over the six-time multi-temporal image classification 

results are divided into four steps, Rule I, II, III and IV. Rule I provide an initial 
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assessment of the LULC change rationality by separating change and no change 

pixels throughout the six observation dates. First it identifies pixels that don’t 

change and labels them as ‘correctly’ classified, and ‘uncertain’ for pixels that 

change. Of the total 5572060 pixels, 3072292 pixels remained unchanged 

throughout the six observation dates, accounting for 55% of the total pixels (Table 

5.4.1.1). From these unchanged pixels, forest constitutes 1095588 number of 

pixels, about 20% of the total, and mixed rangeland constitutes around 33%. All 

other cover types together only make up about 2% of the total pixels (Figure 

5.4.1.1) 

 
Forest 

Mixed 

Rangeland 
Grassland Farmland Built-up Bare soil Water 

Unchanged 

Pixels 
1095588 1856754 99048 15578 1356 3272 696 

Table 5.4.1.1. Total number of unchanged pixels for each category as defined by Rule I 

 

 

Figure 5.4.1.1. Unchanged LULC categories between 1972 and 2011 as identified by change 

rationality test 
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5.4.2. Change rationality test: Rule II 

The objective of Rule II is to test for true land cover change by identifying once-only 

change that occur between two cover types with the exception of change from 

built-up areas to different cover type and change from farmland or bare soil to 

forest. Of the total 3072292 pixels that changed between 1972 and 2011, 1794360 

pixels were identified as change between one cover type to a different cover type, 

leaving 1277932 pixels to be tested further. The largest change identified by this 

Rule was from forest to mixed rangeland (458210 pixels).  

5.4.3. Change rationality test: Rule III and Rule IV 

The Rule III use the ‘rule of majority’ to identify pixels of one cover type that occur 

four or more times throughout the six monitoring dates and then label it as the 

correct class for all the monitoring dates. The incorrect pixels were than 

reclassified as the majority pixels. 703799 pixels were identified in this test. The 

remaining 1609 pixels were considered ‘uncertain’ because they change multiple 

times (more than two times) and no single class retain majority. Each of these 

pixels were reclassified as the class in the map of 2000. The result of change 

rationality test is summarized in Table 5.4.3.  

Rules Number of Pixels (proportion to the total pixels) 

Rule I 3072292 0.55 

Rule II 1794360 0.32 

Rule III 703799 0.12 

Rule IV 1609 0.0002 

Total  5572060 1.00 

 Table 5.4.3. Summary of change rationality test 
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5.5. Post-classification comparison 

The final improved classification maps have been obtained (See appendix B). 

Individual class and its proportion to total area for the six observation dates are 

summarized in Table 5.5.1 and Table 5.5.2 respectively. It can be seen from Table 

5.5.2 and Figure 5.5.1 that the study area is predominantly covered with mixed 

rangeland. This class occupies more than half of the total area throughout the six 

monitoring dates. Forest is the second largest LULC category covering 34% of the 

total area in 1972, but eventually dropped to 28% in 2011. In 1972, bare soil was 

the third largest LULC category in the study area (11.7%). However, since 1987 

increase in farmland makes it the third largest category. Apparently between 1972 

and 2011 forested land was reduced by 29000 ha (6%) while grassland decreased 

by 12000 ha (2%). Relatively, built-up areas increased approximately by 1282.23 

ha while farmland, mixed rangeland, bare soil and water increased by 16000 ha, 

15000 ha,7000 ha and 1000 ha respectively. The result of this post-classification 

comparison is detailed below. 

 

LULC 

Categories 

1972  

(000 ha) 

1987  

(000 ha) 

1996 

 (000 ha) 

2000  

(000 ha) 

2005  

(000 ha) 

2011  

(000 ha) 

Forest 169.8 149.1 148.2 147.3 145.6 140.7 

Mixed 

Rangeland 
250.1 274.4 274.9 273.6 263.2 265.2 

Grassland 50.6 33.9 33.9 33.8 38.4 38.6 

Farmland 9.6 21.0 21.1 22.3 24.8 25.9 

Built-up 4.3 4.3 4.4 4.6 4.9 5.5 

Bare soil 11.7 13.1 13.2 13.9 18.5 19.1 

Water 5.4 5.7 5.7 6.0 6.1 6.4 

Table 5.5.1. Summary of final classification map area statistics for six observation dates 
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LULC 

Categories 

1972 

(%) 

1987 

(%) 

1996 

(%) 

2000 

(%) 

2005 

(%) 

2011 

(%) 

Forest 0.34 0.30 0.30 0.29 0.29 0.28 

Mixed 

Rangeland 
0.50 0.55 0.55 0.55 0.52 0.53 

Grassland 0.10 0.07 0.07 0.07 0.08 0.08 

Farmland 0.02 0.04 0.04 0.04 0.05 0.05 

Built-up  0.008 0.009 0.009 0.009 0.010 0.011 

Bare soil 0.023 0.026 0.026 0.028 0.037 0.038 

Water 0.011 0.011 0.011 0.012 0.012 0.013 

Table 5.5.2. The percentage of land use categories for each observation date 

 

Figure 5.5.1. Distribution of land cover types in East Timor between 1972 and 2011 
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5.6. Post-classification change detection 

To further evaluate the results of land cover change, matrices of land cover changes 

from 1972 to 1987, 1987 to 1996, 1996 to 2000, 2000 to 2005, 2005 to 2011, and 

1972 to 2011 were created (Table 5.6.1, Table 5.6.2, Table 5.6.3, Table 5.6.4, Table 

5.6.5). The matrix is read from left to right and showing the amount of area change 

(hectare) from one observation date to the next observation date. For instance, 

Table 5.5.3 shows LULC categories in 1972 that changed in 1987. The major 

diagonal matrix shows land cover categories in 1972 that remained the same in 

1987, that is, the unchanged class. 

 

1972 

1987 (Area in ha) 

Forest 
Mixed 

rangeland 
Grassland Farmland Built-up  

Bare 

soil 
Water 

Forest 124042.32 41238.9 1402.11 2358.18 83.34 626.94 74.43 

Mixed 

Rangeland 
23611.05 208615.6 3893.4 8815.14 0 4615.38 546.03 

Grassland 1050.12 20816.01 28306.89 98.37 0 332.1 12.6 

Farmland 0 0 129.96 9452.97 0 0 0 

Built-up  0 0 0 0 4255.29 0 0 

Soil 0 3767.04 184.14 230.67 6.3 7504.11 7.83 

Water 360.72 0 0 0 0 0 5047.47 

Table 5.6.1. Matrix of land cover change from 1972 to 1987 

 

Table 5.6.1 shows that 41238.9 hectares of forest changed into mixed rangeland 

and 4470.57 hectares of it were converted into grassland, farmland, built-up areas 

and bare soil altogether. Although, mixed rangeland also changed to forest 

(23611.05 ha), a significant amount of it were converted into grassland, farmland 

and bare soil (17323.92 ha). These changes may seem to be classification errors, 

but forested areas are among some of the most extracted areas in East Timor for 

firewood and timbers. In addition, considering the time interval of 15 years, these 

changes are likely to occur.  
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1987 

1996 (Area in ha) 

Forest 
Mixed 

rangeland 
Grassland Farmland Built-up  Bare soil Water 

Forest 148009.77 1004.22 0.09 19.8 9.45 6.57 14.31 

Mixed 

Rangeland 
190.53 273786.6 47.7 156.42 75.15 148.86 32.31 

Grassland 0.09 68.58 33832.44 0 15.39 0 0 

Farmland 0 8.28 0 20943.36 0.81 2.34 0.54 

Built-up  0 0 0 0 4344.84 0.09 0 

Soil 0 10.44 0.09 3.6 0 13064.31 0.09 

Water 0 0 0 0 0 0 5688.36 

Table 5.6.2. Matrix of land cover change from 1987 to 1996 

 

Compared to 1972 and 1987, the reduction of forest from 1987 to 1996 was 

actually lower. Between 1987 and 1996 1004.22 ha of forest changed into mixed 

rangeland and only 35 ha were actually converted into grassland, farmland, built-

up areas and bare soil (Table 5.6.2). However, there was 428 ha conversion of 

mixed rangeland into grassland, farmland, built-up areas and bare soil. This is in 

contrast to the period between 1996 and 2000 where 1895 ha of mixed rangeland 

changed into grassland, farmland, built-up and bare soil class (Table 5.6.3.) 

Approximately 225 ha of this class also changed into water. This might also seem to 

be classification error but visualization of satellite images confirmed that there was 

unusual high water level at lake “Iralalaru” during this period. For the period 

between 1990 and 2000, approximately 117 ha of forest areas were converted into 

farmland, 10 ha into built-up areas, 13 ha into grassland and 27 ha into bare soil.  
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1996 

2000 (Area in ha) 

Forest 
Mixed 

rangeland 
Grassland Farmland Built-up  Bare soil Water 

Forest 146489.76 1537.02 13.14 117.72 10.17 27 5.58 

Mixed 

Rangeland 
822.78 271934.9 29.7 1035.45 161.46 668.52 225.27 

Grassland 2.61 114.48 33759.63 0.63 0 2.97 0 

Farmland 0 0 0 21084.75 0 30.6 7.83 

Built-up  0 0 0 0 4445.64 0 0 

Bare soil 0 36.36 0.09 26.64 0.72 13157.73 0.63 

Water 0 0 0 0 0 0 5735.61 

Table 5.6.3. Matrix of land cover change from 1996 to 2000 

 

Reduction in forest area continued to occur after the year 2000. As shown in Table 

5.6.4, more than 800 hectares of forest land were converted into grassland, 

farmland, built-up areas and bare soil. This amount, however, is still lower than the 

amount of mixed rangeland that were converted into farmland alone (2259 ha) in 

the same period. The largest change in this period was the conversion of mixed 

rangeland into bare soil (4538 ha).  

 

2000 

2005 (Area in ha) 

Forest 
Mixed 

rangeland 
Grassland Farmland Built-up  Bare soil Water 

Forest 143920.89 2535.84 249.3 292.41 31.14 279.99 5.58 

Mixed 

Rangeland 
1498.86 260431.8 4472.55 2259.99 283.5 4538.88 137.16 

Grassland 130.59 28.71 33625.35 11.25 6.66 0 0 

Farmland 0 69.3 0 22178.16 10.17 0 7.56 

Built-up  0 0 0 0 4617.99 0 0 

Soil 0 169.83 19.26 53.01 0.36 13642.74 1.62 

Water 0 0 0 0 0 0 5974.92 

Table 5.6.4. Matrix of land cover change from 2000 to 2005 
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The period between 2005 and 2011 witnessed a conversion of more than 4000 

hectares of forest land into mixed rangeland (Table 5.6.5). In addition, more than 

800 hectares of forest also changed into farmland, grassland, built-up areas and 

bare soil. During this period conversion of mixed rangeland is much lower than the 

previous observation date (2000 – 2005). As shown in Table 5.5.7, the amount of 

mixed rangeland that were converted into forest, grassland, farmland, built-up 

areas and bare soil only accounted for only 1638 hectares which barely equals half 

the amount of mixed rangeland that were converted into grassland in the previous 

observation data.   

 

2005 

2011 (Area in ha) 

Forest 
Mixed 

rangeland 
Grassland Farmland Built-up  Bare soil Water 

Forest 140277.96 4025.97 79.47 685.62 127.71 196.2 157.41 

Mixed 

Rangeland 
431.37 261185.9 181.98 481.41 433.35 405.63 115.92 

Grassland 0 2.07 38356.83 0.27 0.18 7.02 0.09 

Farmland 0 0 0 24755.58 26.37 1.98 10.89 

Built-up  0 0 0 0 4949.82 0 0 

Soil 0 2.97 0.09 5.04 0.09 18452.88 0.54 

Water 0 0 0 0 0 0 6126.84 

Table 5.6.5. Matrix of land cover change from 2005 to 2011 

 

Overall, between 1972 and 2011 there was a 17% of reduction in forest cover. This 

is 1% higher than the value reported by Erikstad et al (2001) in their previous bi-

temporal LULC study for the entire country between 1972 and 1999 (Bouma and 

Kobryn, 2001). This small increase could be the result of gain and loss of forest 

after the past four decades. As shown in Figure 5.6.1, a significant amount of forest 

cover was cleared and only small amount of areas were gained between 1972 and 

2011. The loss of forest were mainly the conversion from forest to mixed 

rangeland, grassland, farmland and built-up areas while gain in the amount of 
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forest mostly come from the conversion of mixed rangeland and grassland. Figure 

5.6.2 shows “from-to” change that occurred between 1972 and 2011. Note that for 

visualization purpose only major categorical changes are shown in this map (i.e., 

forest, mixed rangeland and grassland).  

 

Figure 5.6.1. Gain and loss of LULC change classes between 1972 and 2011 

 

 

Figure 5.6.2. “From-to” major categorical change map between 1972 and 2011 
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The results from change detection indicated that the reduction of forest occurred 

primarily in the district of Lautem toward the eastern part of the study area (Figure 

5.6.2 and Figure 5.6.3). In contrast, gain in the amount of forest area occurred 

mostly in Baucau and Viqueque districts (Figure 5.6.4). This trend could be 

explained through three main reasons.  

First, the uncontrollable practice of logging during Indonesian occupation of East 

Timor during which timbers were cut not only for domestic use but also for the 

black market. Previous studies have also considered the argument that during 

Indonesia’s occupation of East Timor, the military promoted logging as a means to 

suppress the resistance movement of East Timor’s guerrillas (Aditjondro, 1994). 

This resulted in deforestation even in area where agricultural expansion did not 

exist, such as Lautem.  

 

Figure 5.6.3. “From-to” change between 1972 and 2011 in Lautem district 
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Figure 5.6.4. “From-to” change between 1972 and 2011 in Baucau and Viqueque districts 

Second, during Indonesian occupation of East Timor, the government implemented 

a demographic policy by which villagers were encouraged to relocate to other 

remote areas. As a consequence, more lands were cleared and deforested to make 

way for new villages, settlements and farmlands. In the study area, especially in 

Viqueque, the effect of this transmigration policy is still apparent today with well 

regulated settlements and existence of shifting cultivation practices (Sundland et 

al., 2001) 

Third, while most rice production occur in the lowland area, a substantial 

proportion of the farmland/plantation in the study area is areas with greater 

incline, where slope stability and erosion tend to be major problems. A recent study 

by Adams (2010) stated that nearly half the total area of East Timor is on steep 

slope (above 25 degrees). In these areas of steep slope, community villagers often 

practice slash-and-burn, swidden agriculture. Thus, these steep farmlands tend to 

suffer from rapid soil erosion and nutrient depletion, which forces farmers to find 
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new land and forest to meet their growing needs, so farmers could have moved 

towards the forested area for their agricultural activities.  

5.7. Influence of 2000 map 

A number of uncertainty-related issues in this study need to be addressed and 

recognized. First and foremost is the unavailability of map accuracy assessment for 

all maps other than 2000 map. These maps were generated by combining change 

maps, identified through NDVI differencing, with maps generated from 

unsupervised classification. Since the 2000 map was used as starting point 

(reference map) for final classification of all the other maps, a large portion of 

pixels from 2000 map is present in all the other maps. In other words, if an 

assumption was made that changes had not occurred over the past 40 years, the 

distribution of land use/cover in the study area would be similar to that depicted 

by the 2000 map. Under no change scenario, errors in each map would be 

correlated. However, in the change trajectory test, only 55% of the no change pixels 

were captured from the combined maps, which may also mean that only half of the 

total pixels of each map that has correlation (in terms of accuracy) with the map of 

2000. In addition, the selection of threshold values for change/no change maps 

were merely conducted by visual inspection which also makes it difficult to 

estimate the accuracy.  

 

5.8. Change rationality rules 

The focus of this study is to detect land use/cover change with emphasis on forest 

cover change. Thus, the rules applied in the change trajectory evaluation test were 

based on the characteristic of land use/cover change in East Timor. These 

characteristics, or change behavior, were defined solely based on information and 

studies that linked expansion of agricultural lands, population growth, and 

increased shifting cultivation practices to deforestation. Clearly, this is somewhat 

an oversimplification of the true drivers of deforestation, which are far more 

complex than rules defined in this study (Lambin et al., 2001). Limitations of these 
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rules are recognized by the fact that increase in farmland occurred primarily in the 

southern coast (Viqueque district) but less in Lautem, even though large 

proportion of deforestation occurred in Lautem. In addition to that, while the rule 

was established based on the notion that deforestation occur due to urban growth 

and agricultural expansion, the change detection in this study revealed that large 

amount of forest were converted into mixed rangeland and not farmland. However, 

suffix to say that application of these rules can capture large part of land use/cover 

change behavior in the study area. 

5.9. Potential of Approach  

So far, with the exception of bio-temporal studies by Bouma and Kobryn (2004) 

and Erikstad et al (2001), there has not been a multi-temporal LULC change studies 

in East Timor. Therefore it is difficult to conduct a meaningful comparison between 

the result from this study and other studies. However, the potential of this 

approach could be improved with adequate field data in order to define better 

information and spectral classes. Furthermore, higher-ground-resolution satellite 

imagery could be used to detect LULC changes in this small-structured study area.  
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CHAPTER 6 

6.1. CONCLUSION 

This study has attempted to detect land use/cover change in the eastern part of 

East Timor between 1972 and 2011 using Landsat images with limited ground 

truth information. Using calibration information that came with satellite data, all 

the images were radiometrically and atmospherically corrected using widely used 

technique such as Dark-Object Subtraction (DOS). 

A combination of supervised and unsupervised classification techniques were 

employed to derive maps for all the observation dates. These maps were combined 

with change/no change maps generated through NDVI differencing method to 

derive final classification maps for each observation dates. Furthermore, a simple 

rule-based rationality test was performed to evaluate changes between pixels in 

the final classification maps. A total of 5572060 number pixels were tested and the 

result shows that 3072292 number of pixels were identified as no change 

throughout the six observation dates (55%) and were labeled as ‘correct’. 

‘Uncertain’ pixels were then reclassified using information from 2000 map. 

By applying post-classification comparison change detection technique the study 

reveals that between 1972 and 2011, 17% of forested land was cleared from the 

area although some gain from other LULC classes was also identified. By comparing 

it with study from Erikstad et al (201) it was concluded the amount of forest cover 

loss in the eastern half of East Timor was 1% higher than the total amount of loss 

reported by Erikstad et al (2001) for the entire country.  

6.2. Limitations  

 

Several constrains were encountered in this multi-temporal study of land cover 

change and attempts were made to minimize them. These constrains include lack of 

historical spatial data on land use/cover maps, reference data, and combination of 
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input data with varying spatial and spectral resolutions (MSS, TM, and ETM+). Data 

from MSS sensor (1972 images) had 79m x 79m spatial resolution with 4 bands 

compared to TM and ETM+ images which had 30m x 30m resolution and higher 

spectral resolution. Resampling of MSS data to match TM were necessary to make 

them comparable.  

Another constrain was the limited availability of cloud-free images for the much 

preferred dates which made it difficult to obtain the images of anniversary dates. 

Originally, the study was planned to look at land cover change between 1972 and 

2012. However, due to large contamination of clouds in the 2012, the 2011 image 

of ETM+ was selected instead. The choice of time interval between observation 

dates was also based on the availability of cloud free images.  

 

The biggest limitation was the lack of reference data for all the observation dates. 

Much of spatial data that were produced prior to 2000 were supposedly kept by 

Indonesian mapping agency. A correspondence with this agency revealed that 

these spatial data no longer exist in their possession. Additionally, reports and 

publication about East Timor’s past socio-demographic and land use characteristic 

were only held by foreign library in hard-copy format. Therefore, simple 

methodology for evaluating the land cover change was a necessary mean. And 

although this study shows a satisfying result, it is critical to note that there is some 

degree, if not great, of misclassification and class confusion in the change detection 

analysis due to the aforementioned limitations.  

 

Therefore, based on the limitations and findings from this study, it is recommended 

that future studies be conducted in such a way that incorporates more reliable data 

with better spatial, spectral and temporal resolution. It’s also recommended that 

mapping entities in East Timor strengthen their efforts to make necessary spatial 

data available not only for internal use but also for the public at large. This could be 

accomplished through an increased collaborative work with foreign institutions 
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(both governmental and non-governmental) that hold spatial data (digital and 

archival) in their possession.  
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APPENDIX A 
Change/no change pixels generated from NDVI differencing technique 

 

Figure A.1. Change/no change pixels for the year 1972 and 1987 
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Figure A.2. Change/no change pixels for the year 1987 and 1996 

 

Figure A.3. Change/no change pixels for the year 1996 and 2000 
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Figure A.3. Change/no change pixels for the year 2000 and 2005 

 

Figure A.3. Change/no change pixels for the year 2005 and 2011 
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APPENDIX B 
Final Classification maps generated by combining change maps (NDVI differencing) and classified 

maps (supervised and unsupervised) 

Figure B.1. Final LULC map for the year 1972 
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Figure B.2. Final LULC map for the year 1987 

 

Figure B.3. Final LUL map for the year 1996 
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Figure B.4. Final LULC map for the year 2000 

 

Figure B.5. Final LULC map for the year 2005 
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Figure B.6. Final LULC map for the year 2011 
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APPENDIX C 
 

Sensor 
Date of 
Acquisition 

Bands 
Lmax Lmin d Esun Sun elevation 

MSS  Oct 4, 1972 Band 1 201.000 0.000 1.00005  1823 33.04947919 
  Band 2 171.300 9.100 1.00005 1559 33.04947919 
  Band 3 161.600 -8.400 1.00005 1276  33.04947919 
  Band 4 159.000 0.000 1.00005 880.1  33.04947919 
MSS  Oct 23, 1972 Band 1 201.000 0.000 0.99467 1823 31.43913809 
  Band 2 171.300 9.100 0.99467 1559 31.43913809 
  Band 3 161.600 -8.400 0.99467 1276  31.43913809 
  Band 4 159.000 0.000 0.99467 880.1  31.43913809 
        
TM Sept 8, 1987 Band 1 169.000 -1.520  1.00750 1983 38.7524847 
  Band 2 333.000  -2.840 1.00750 1796 38.7524847 
  Band 3 264.000  -1.170 1.00750 1536 38.7524847 
  Band 4 221.000 -1.510 1.00750 1031 38.7524847 
  Band 5 30.200 -0.370 1.00750 220.0 38.7524847 
  Band 7 16.500 -0.150 1.00750 83.4 38.7524847 
        
TM Aug 15, 1996 Band 1 169.000 -1.520  1.01281 1983 45.96315356 
  Band 2 333.000  -2.840 1.01281 1796 45.96315356 
  Band 3 264.000  -1.170 1.01281 1536 45.96315356 
  Band 4 221.000 -1.510 1.01281 1031 45.96315356 
  Band 5 30.200 -0.370 1.01281 220.0 45.96315356 
  Band 7 16.500 -0.150 1.01281 83.4 45.96315356 
ETM+ Sept 1, 2000 Band 1 191.600 -6.200 1.00850 1997 34.2739053 
  Band 2 196.500  -6.400 1.00850 1812 34.2739053 
  Band 3 152.900  -5.000 1.00850 1533 34.2739053 
  Band 4 241.100 -5.100 1.00850 1039 34.2739053 
  Band 5 31.060 -1.000 1.00850 230.8 34.2739053 
  Band 7 10.800 0.350 1.00850 84.90 34.2739053 
        
TM Oct 11, 2005 Band 1 169.000 -1.520  0.99832 1983 27.7005789 
  Band 2 365.000  -2.840 0.99832 1796 27.7005789 
  Band 3 264.000  -1.170 0.99832 1536 27.7005789 
  Band 4 221.000 -1.510 0.99832 1031 27.7005789 
  Band 5 30.200 -0.370 0.99832 220.0 27.7005789 
  Band 7 16.500 -0.150 0.99832 83.4 45.96315356 
        
ETM+ Aug 17, 2011 Band 1 191.600 -6.200 1.01244 1983 37.8719668 
  Band 2 196.500  -6.400 1.01244 1796 37.8719668 
  Band 3 152.900  -5.000 1.01244 1536 37.8719668 
  Band 4 241.100 -5.100 1.01244 1031 37.8719668 
  Band 5 31.060 -1.000 1.01244 220.0 37.8719668 
  Band 7 10.800 0.350 1.01244 83.4 37.8719668 
Table C.2. Radiometric calibration coefficients for Landsat data used in this study 

 



69 
 

APPENDIX D 
NDVI Maps for all observation dates 

 

Figure D.1. NDVI of 1972 

 

Figure D.2. NDVI of 1987 
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Figure D.3. NDVI of 1996 

 

Figure D.4. NDVI of 2000 
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Figure D.5. NDVI of 2005 

 

Figure D.6. NDVI 2011 



 

 


