
 

  

Detecting Wetland Change through Supervised 

Classification of Landsat Satellite Imagery within the 

Tunkwa Watershed of British Columbia, Canada 

Steven Lee 

June 2011 

Examensarbete, kandidatnivå, 15 hp 

Geomatik 

Degree Project for Bachelor of Science/Technology in Geomatics 

Geomatikprogrammet 

 

 

  

 
 

 

Supervisor: Peter Fawcett 

Examiner: Gerhard Bax 

Co-examiner: Anders Brandt 

 

  

 



ii 
 

Abstract 

Wetlands are considered to be one of the most valuable natural occurring forms of land 

cover in the world. Hydrologic regulation, carbon sequestration, and habitat provision 

for a wide assortment of flora and fauna are just a few of the benefits associated with 

wetlands. The implementation of satellite remote sensing has been demonstrated to be 

a reliable approach to monitoring wetlands over time. Unfortunately, a national wetland 

inventory does not exist for Canada at this time. This study employs a supervised 

classification method of Landsat satellite imagery between 1976 and 2008 within the 

Tunkwa watershed, southwest of Kamloops, British Columbia, Canada. Images from 2005 

and 2008 were repaired using a gap-filling technique due to do the failure of the scan-

line corrector on the Landsat 7 satellite in 2003. Percentage pixel counts for wetlands 

were compared, and a diminishing trend was identified; approximately 4.8% of wetland 

coverage loss was recognized. The influence of the expansion of Highland Valley Copper 

and the forestry industry in the area may be the leading causes of wetland desiccation. 

This study expresses the feasibility of wetland monitoring using remote sensing and 

emphasizes the need for future work to compile a Canadian wetland inventory. 
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1. Introduction 

1.1 Background 

Although wetlands only cover roughly 6% of the Earth’s land surface, they are 

considered an immensely important part of the global ecosystem (Töyrä & Pietroniro, 

2005; Kashaigili, Mbilinyi, McCartney & Mwanuzi, 2006). Wetlands are often described as 

land that shares a boundary between bodies of water and terrestrial zones (Sader, Ahl, & 

Liou, 1995). A number of different sub-classes of wetlands exist, but each can be defined 

as an area saturated with water for a duration that is sufficient to sustain various types 

of hydrologic and biological activities (National Wetlands Working Group, 1997). 

Wetlands are commonly attributed to high levels of biodiversity, they help regulate 

watershed hydrology, and they are source of carbon sequestration (Wright & Gallant, 

2007). However, environmental researchers in recent decades have detected a trend of 

diminishment regarding the extent and health of wetland areas. Wetlands have been 

considered to be one of the most threatened environments in the world (Huang, Wang, 

Liu & Niu, 2010; World Wildlife Fun, 2000). Western Canadian wetlands have been 

predicted to potentially suffer between 7 and 47% decrease in future years (Withey & 

Cornelis van Kooten, 2011). This trend has been linked primarily to direct anthropogenic 

interaction, such as use for irrigation, or indirect forces, namely climate change (Eppink, 

van den Bergh & Rietveld, 2004; Hartig, Gornitz, Kolker, Mushacke & Fallon, 2002). 

Ecological fragmentation is often linked to human development in wetlands, generating 

a desire for management to establish a reasonable degree of land use that will generate 

a state of sustainability in these areas (Eppink et al., 2004). Researchers have concluded 

that land use changes and agricultural expansion are of the main driving factors in the 

decrease of the extent of riparian zones in wetland areas (Dimitriou & Zacharias, 2009; 

Jogo & Hassan, 2010). Adjacency to urban centers has proven to be problematic, as 

these zones are frequently altered for agricultural or urban development purposes. 
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Depending on the climatic and human impact on some watersheds, wetlands may be at 

risk of rapid area loss, especially in cases of synergistic interactions from both causes.  

As the impacts of climate change and land use practices in the environment have 

become more abundantly apparent, remote sensing becomes more of a vital tool for 

the assessment of the well-being of wetlands (Cook, Bolstad, Næsset, Garrigues, 

Morisette, Nickeson, Davis, 2009). The creation of satellite missions, such as the Landsat 

program established in 1972 by NASA and the U.S. Geological survey (Wulder, White, 

Goward, Masek, Irons, Herold, Cohen, Loveland, Woodcock, 2008), have become an 

essential source of remotely sensed data for decades. Maintaining accurate records of 

the state of wetlands is crucial in their preservation, and remote sensing technology has 

proven to be effective in doing so; systematically conducting field studies can be an 

arduous task. One of the main aspects that can be closely monitored remotely is the 

overall behaviour of wetlands over time. GIS tools are commonly implemented to 

measure the certain hydrologic parameters, such as water level, through comparison of 

remotely sensed data from different dates (Weiss & Crabtree, 2011; Williams & Lyon, 

1997). Fairly accurate water levels can be measured using high resolution images as a 

means of monitoring wetland desiccation. Generation of a number of maps of the same 

area on a regular basis allows analysts to identify relationships between changes in the 

terrain over time (Töyrä & Pietroniro, 2005). A wealthy amount of information can be 

extracted through the comparison of multiple images, and this data can sometimes be 

extrapolated to predict future changes. Using images from a single date is an ineffective 

method in highlighting the fluctuations in wetland extent over time; the dynamic nature 

of wetlands is best monitored using a series of images from different years (Wright & 

Gallant, 2007). The flexibility of GIS allows the analyst to control the scale of their 

research, depending on the data available. Remote sensing is complemented by ground 

analyses in wetland mapping from local to global scales, allowing for wetland 
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inventories to be compiled (Poulin, Davranche, Lefebvre, 2010; Rebelo, Finlayson, 

Nahabhatla, 2009).  The quality and reliability of these inventories expands as the 

awareness of wetland importance rises, and scientists skilled with GIS software are able 

to capitalize on the availability of remotely sensed data to maintain comprehensive and 

dynamic data regarding wetland health. 

Unfortunately, a national wetland inventory does not exist for Canada. The availability of 

wetland data is staggered throughout the provinces and biomes of the country from 

multiple sources. One of the forerunners in wetland investigation is Sweden. An 

extensive survey over 25 years resulted in the Swedish national wetland inventory (VMI) 

(Gunnarsson & Löfroth, 2009). The survey’s intent is to educate people on the value of 

wetlands, so future planning considers the potential impacts on them. Similarly, the U.S. 

Fish & Wildlife Service, a branch of the United States government, provides their own 

National Wetlands Inventory (NWI) to the public (U.S. Fish & Wildlife Service). 

Development of the NWI began in 1975 using single-date colour-infrared aerial 

photography as well as grayscale photography (Wright & Gallant, 2007). Use of Landsat 

data was not implemented at this time due to the inability to accurately classify land 

cover. A similar collective effort and single database has not been accumulated for 

Canada, likely due to the implausibility of gathering data for a country so immense with 

such a large amount of wetlands. Canada is estimated to be home to one quarter of the 

world’s wetland ecosystems (Natural Resources Canada; Environment Canada). 

However, government branches including Environment Canada and Natural Resources 

Canada provide some information to the public on a regional scale, most of which are 

broad facts about Canadian wetlands in general, or monitoring and maintenance efforts 

for specific wetland programs (Natural Resources Canada; Environment Canada). Third 

party organizations are often a good source of wetland data; GIS and remotely sensed 

data and maps that may not be readily available from government sources is gathered 
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and shared by organizations or researchers independent of Environment Canada or 

Natural Resources Canada. An international organization with a major outlet in Canada 

is Ducks Unlimited Canada (DUC). This organization is a collaboration of individuals 

whose primary goal is to preserve waterfowl habitat and implement wetland 

conservation and restoration programs (Ducks Unlimited Canada). Ducks Unlimited’s 

U.S. branch began using Landsat imagery for wetland mapping in 1979, and a recent 

initiative outlining steps towards creating a Canadian Wetland Inventory (CWI) using 

similar methods is described in an article published by DUC entitled “The Need for a 

Canadian Wetland Inventory” (Reimer, 2009). The development of a CWI is an ongoing 

operation established in 2002 by DUC, Environment Canada, Canadian Space Agency, 

and North American Wetlands Council. Wetland mapping has begun using primarily 

Landsat and RADARSAT imagery, which is considered to be the most cost-effective 

imagery. A progress map highlighting the status of the wetland inventory is shown in 

Figure 1. The current lack of wetland information for British Columbia is quite clear. A 

comprehensive case study performed by DUC and the Nature Conservancy of Canada 

suggests that the protection of wetlands is beneficial to the overall wealth and well-

being of society (Olewiler, 2004). Some examples of the value of wetlands provided in 

the study are: improving surface and subsurface water quality, decreasing greenhouse 

gas emissions, improving air quality, and decreasing water treatment costs. Wetlands 

are also habitats to a wide variety of wildlife, and their diminishment is a threat to these 

species (Symmetree Consulting Group, 2009). These are just a few of the reasons why 

the creation of a wetland inventory for preservation purposes would be beneficial to the 

country. 
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Figure 1: Wetland inventory progress in Canada 
Source: http://www.ducks.ca/cwi/  

1.2 Study area 

Part of the motive in selecting an area for this study stemmed from the lack of progress 

in mapping wetlands in western Canada. The chosen area is based on findings of Ducks 

Unlimited’s Intermountain Wetland Conservation Project; wetlands within the Tunkwa 

watershed, southwest of Kamloops, British Columbia, have been identified as degrading 

environments. This watershed is a portion of the interior of British Columbia, in the 

Thompson/Okanagan region. The selected area considered in this study includes the 

watershed’s two largest reservoirs, Tunkwa and Leighton Lakes. The extent reaches from 

northeast of these lakes, to southwest of Highland Valley Copper Mine (Figure 2). All 

satellite images of the area used in this study were taken during the late spring or 

summer season. 
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Figure 2: Study area including major landmarks within it 

1.3 General scope and aims of study 

Using the information available on Canadian wetlands, as well as the literature regarding 

wetlands and remote sensing as a basis, this study aims to accomplish the following: 

 Identify wetlands for a number of different years in the Tunkwa watershed using 

remote sensing and detect any changes in their extent or existence. 

 Correlate changes with nearby land use practices or climate fluctuations over 

time. The growth of Highland Valley Copper Mine and influence of the forestry 

sector in the area will be major considerations on the impact of wetland 

degradation. 

 Assess the feasibility and practicality of using remote sensing for this study, 

determine if gap-filled imagery is useable, and compare Landsat imagery with 

other data types or methods. 

 Suggest potential improvements to similar studies based on the apparent 

limitations in this one. 
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Due to the lack of a provincial or national wetland inventory, remotely sensed images 

become a valuable source for monitoring wetlands, and image classification allows the 

measurement of changes to be quantified. Studies concerning the recession or loss of 

different types of wetlands are often based on the analysis of remotely sensed data 

(Melendez-Pastor, Navarro-Pedreño, Gómez, Koch, 2010). Comparison of multiple 

images typically yields better results, as evaluation of wetland condition using a single 

image is not as reliable due to the dynamic nature of wetland environments (Nielsen, 

Prince, Koeln, 2008). Implementation of remote sensing technology in case studies of 

land cover change proves to be a rapid and advantageous alternative to the more 

labour-intensive and time-consuming method of field investigation (Lee, Yeh, 2009; 

Zomer, Trabucco, Ustin, 2009). Field observations or the use of previously classified land 

cover data as corroboration for the classification of the study area is common practice in 

ensuring that classes are being accurately represented (Nielsen et al., 2008; Kashaigili et 

al., 2006). This study will attempt to showcase the methods employed in the generation 

of a Canadian wetland inventory for British Columbia. Due to British Columbia’s unique 

terrain, it’s possible that the imagery and methodology used for wetland classification in 

other parts of Canada may not be as suitable. 

A major factor in wetland analysis is attempting to determine whether or not 

degradation of is stemmed from anthropogenic sources, or if it is a result of climate 

change. It’s important to consider criteria that could lead to both scenarios, such as 

abnormalities in weather patterns or accelerated use of the wetland’s groundwater. One 

indicator that might suggest reduction in wetland size is attributed to land use is the 

growth in agricultural area over several years (Dimitriou & Zacharias, 2009). Remote 

sensing and land use classification can be a useful tool for correlating these factors with 

wetland recession by simply comparing climate data or land use change over time with 

the extent of wetlands. However, it may be dangerous to associate correlation with 
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causation; remote sensing may be able to link these phenomena to each other, but may 

not be the best method in identification of the driving force behind wetland 

degradation.  

2. Methodology 

2.1 Materials 

The software used for this study existed as two programs: ArcMap 10 and PANCROMA. 

The latter was employed in this study as a tool for pan-sharpening and gap filling 

images taken by the Landsat Program. Each image was acquired from the United States 

Geological Survey’s Landsat database from Landsat missions 1, 5, and 7 (U.S. Geological 

Survey, n.d.). Examples of all raw images retrieved from the Landsat archive can be 

found in Appendix A. Image processing in PANCROMA was preparatory, and processed 

maps were subsequently imported into ArcMap for final analyses. All processes were 

performed in a raster environment with the exception of vector data used for defining 

the study area. ArcMap’s Image Classification toolbar was used for classification 

purposes.  

2.2 Defining an Image Classification 

Image classification is the process of automatically categorizing every pixel in a raster 

environment based on their individual spectral reflectance. There are two approaches to 

the classification process: supervised and unsupervised. The latter automatically groups 

cells into clusters based on the statistics of their digital numbers (DNs), which are 

representative of each pixels intensity value (Lillesand, Kiefer, Chipman, 2004, p. 551). 

This process requires minimal user input; aside from selection of preferred number of 

classes, the unsupervised classification method is entirely automated. In a supervised 

classification, the user manually controls the inputs, allowing the user’s knowledge to 

influence the results. 
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A supervised classification process was selected for this study. It was executed by 

digitizing individual training sites for each year’s satellite image. Determination of 

appropriate classes for the area was extrapolated from a year 2000 land use layer 

provided by GeoBase. This layer acted as a surrogate for on-site investigation. This 

method allows for monitoring of wetland characteristics without experiencing the 

difficulties associated with attempting to reach wetlands in the field; encounters with 

dangerous wildlife and areas with unfavourable navigability prove difficult for the 

researcher (Zomer et al., 2009). The ability to classify wetlands and the vegetation within 

them remotely over several years eliminates these drawbacks by providing a practical 

alternative. Running each classification generates pixel counts for each class, which 

allows for comparison between each year.  

2.3 PANCROMA 

PANCROMA is a valuable software application for the manipulation of Landsat satellite 

imagery. One of the software’s main features is its ability to sharpen lower resolution 

bands by adding the panchromatic high-resolution band (Childs, 2011a). Pan-

sharpening is a technique that employs the fusion of data from the lower resolution 

multispectral bands and the higher resolution panchromatic band (Garzelli, Nencini, 

2007). PANCROMA allows for the creation of higher resolution images with this process. 

Images provided by Landsat for some years include these appropriate bands that allow 

images to be reduced to 15 m resolution from 30 m resolution. 

A second use of PANCROMA that was essential for this study was the gap filling 

function. A permanent failure of the scan-line corrector (SLC) on the Landsat 7 satellite 

on May 31st of 2003 rendered all subsequent images taken by the satellite void of 

approximately 20% of the pixels in the entire coverage (Pringle, Schmidt, Muir, 2009).  

Figure 3 illustrates the difference in scanning before and after the fault. Due to the 

significant data loss in each SLC-off scene, gap filling techniques have emerged to mend 
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the images. The gap filling process used in this study combines the data from an image 

taken in 2001 by the Landsat 7 satellite with interpolated values derived from pixel 

brightness in both the 2001 image and the gapped image. These gap-filled images were 

subsequently pan-sharpened and the resulting rasters of the study area appeared quite 

seamless.  

 

Figure 3: Diagram explaining the different scan pattern after the SLC failure 
Source: PANCROMA user’s manual (Childs, 2011a). 

2.3.1 Gap Filling 

The procedure to fill the gaps in the SLC-off images requires both a reference and an 

adjust image. The reference image refers to a SLC-off image with gaps, while the adjust 

image is a SLC-on image taken before May 31st, 2003. The 2001 adjust image is shown 

in Figure 4, and an example of one of the two reference images used is shown in Figure 

5. Each image is zoomed to the study area for clarity; the extent of each Landsat image 

in its entirety can be seen in Appendix A. 
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Figure 4: 2001 panchromatic band, one of many individual bands used to repair the gapped images 

 

Figure 5: 2008 panchromatic band, showing the gaps present in all Landsat 7 images after May 31
st

, 2003 
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PANCROMA requires only the blue, green, and red multispectral bands for gap-filling, 

but the process employed in this study utilizes the near infrared (NIR) and panchromatic 

bands in order to pan-sharpen the image after being filled. Each of the five images for 

each band of the reference image was subset into smaller images, effectively eliminating 

the area beyond the extent of the study area. The same process was then implemented 

for each band of the adjust image. For the gap-filling procedure to perform correctly, 

the software demands that each pair of matching bands from the two images have 

identical corner coordinates and row and column sizes. Each of the red, blue, green, and 

NIR pairs was resized to 1515 x 1236 columns and rows, respectively. The pair of 

panchromatic bands was then resized to 3030 x 2472 columns and rows; these bands 

require twice as many rows and columns and must perfectly match the other four bands 

in order for the process to generate a useable product (Childs, 2011a). 

With five matching pairs of grayscale images prepared, the gaps in the Landsat 7 images 

were then filled. This study followed the Hayes Method for filling gaps, which is a 

preferable to a simple transfer method. The Hayes method considers both the pixel 

values in the adjust image and the reference image, and estimates appropriate new 

values based on an interpolation of the raster’s cells. Gaps were filled in each image 

individually by selecting matching bands from the reference and adjust images and 

running the algorithm. Interpolation parameters were fixed for each set of bands as any 

differences would result in problems when creating an RGB image. Parameters were 

tweaked slightly from the default settings based on a number of trial runs. Adjustments 

were made based on the degree of visual congruence the gap-filled image had with the 

adjust image, as well as the lack of visibility of the gap residue.  

2.3.2 Pan-sharpening 

Once the references images for each band were repaired, all five bands were 

simultaneously pan-sharpened and combined to produce a true colour image at 15 m 
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resolution. This entire process was executed for the 2005 (Figure 6) and 2008 (Figure 7) 

SLC-off images. Pan sharpening was also applied to the 2001 SLC-on image.  

 

Figure 6: True colour pan-sharpened and gap-filled satellite image of the study area for 2005 
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Figure 7: True colour pan-sharpened and gap-filled satellite image of the study area for 2008 

 An example highlighting the difference between a gapped and gap-filled image is 

shown at a zoomed-in scale in Figure 8. A larger scale image highlighting the difference 

between a sharpened an unsharpened image is shown in Figure 9. The boundaries 

between land cover types, such as Tunkwa Lake’s shoreline, are more clearly defined in 

the pan-sharpened image. 
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              Figure 8: 2008 gapped image (top) vs. 2008 gap-filled and pan-sharpened image (bottom) 
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Figure 9: Close shot of Tunkwa lake in grayscale displaying the clarity difference between an unsharpened (left) and pan-
sharpened (right) satellite image of 30 m and 15 m resolution, respectively 

2.4 Image Classification 

2.4.1 Training stage 

The image classification process was carried out using ArcMap 10’s Image Classification 

tool. Although the clumping of pixels is performed automatically by the software, the 

procedure followed in this study required manual input. The quality of these inputs is 

instrumental in generating an accurate classified image. These inputs existed in the form 

of training sites, which were polygons digitized within the boundary of several different 

feature classes. The placement of these polygons was based primarily on the spectral 

reflectance of pixels as seen in different wavelength band combinations. Some useful 

combinations of the red, green, and blue bands used during the training stage were 4, 3, 

2 (Figure 10) and 4, 1, 4 (Figure 11) for the purposes of visualization and better object 

determination. The latter was effective in identifying wetlands, while the former was 

good for digitizing training sites for most of the other features. In addition, the pre-

classified land cover layer from 2000 was used to help identify what each feature was in 
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reality. This layer helped differentiate between some pixels of similar reflectance. It also 

proved useful for comparing land use changes in different years.  

 

Figure 10: False colour image of 2001 using the Near-infrared band 
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Figure 11: False colour image using a 4, 1, 4 band combination for red, green and blue, respectively. This combination was 
useful for identifying wetlands. 

Although the focus of this study is on the wetlands and associated vegetation, accurate 

classification of all other features must be separated into their own distinct categories to 

reduce error in the final pixel counts. An example of the training sites digitized for each 

feature class is shown in Figure 12. The training process was repeated for each year’s 

image and the training sites digitized for each image was kept relatively consistent in 

regards to polygon sizing and placement. Several features considered similar were 

clumped together into the same class.  
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Figure 12: Example of digitized training sites shown atop a transparent 2001 image 

2.4.2 Supervised Classification 

A Maximum Likelihood classification was executed for each image. This method assumes 

a normal distribution of DN values, allowing the function to determine the probability of 

a pixel belonging to a certain feature class and assign each pixel to the highest 

probability class (Lillesand et al., 2004, p. 552). Classifications were often repeated 

numerous times after additional training sites were added to achieve satisfactory results. 

Wetland areas were occasionally classified as grassland, requiring additional polygons to 

be digitized to properly classify the image. 
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2.4.3 Post Classification Processing 

The classification process often misclassifies pixels in outlying areas that are not an 

accurate representation of reality; individual or small clusters of pixels that are 

apparently segregated from other groups of the same class are often misclassified. Cells 

with DN values that fall midway between two distinct classes may be misclassified, 

creating a generous amount of noise within the image. Two filters were used to manage 

these problems. Isolated cells whose class did not match adjacent cells were changed to 

match the class of the majority of neighbouring cells. This filter adjusted cells with four 

orthogonal neighbours of another class. The pixels along the boundaries of the resulting 

layer’s classes were then smoothed by expanding and shrinking the pixels, reducing 

clutter along the boundaries shared by two classes. These post-processing tools were 

useful for eliminating misclassified pixels regardless of the image’s resolution.  With 

filtering complete, each classified image was clipped to the same extent.  

2.5 Accuracy Assessment  

The accuracy of each classified image was tested by randomly generating a series of 

points within ArcMap 10, manually identifying the land cover type at each location, and 

subsequently comparing the land cover with the classified image. 100 points were 

generated for each image. The resulting accuracies are shown in Table 1. 

Table 1: Accuracy assessment results 

Year 1976 1990 1995 2001 2005 2008 

% accurate 91 85 85 86 82 84 

 

3. Results 

The wetlands within the portion of Tunkwa watershed located southwest of Kamloops, 

British Columbia were identified as receding through comparison of each classification. 

Each classified, filtered and clipped layer is shown in Figures 13 - 18.  
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Figure 13: Supervised classification result for 1976 
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Figure 14: Supervised classification result for 1990 
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Figure 15: Supervised classification result for 1995 
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Figure 16: Supervised classification result for 2001 
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Figure 17: Supervised classification result for 2005 
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Figure 18: Supervised classification result for 2008 

The amount of pixels present for each class was then compared for each year. Due to 

incongruent pixel sizes for each year, land cover changes for each feature are expressed 

as a percentage of the total coverage, as opposed to an exact pixel count.  Percent 

coverage values for wetlands for each year are shown in Table 2. Values from 1976 were 

excluded as the pixel counts were a poor representation of the actual wetlands in the 

Tunkwa watershed due to their poor resolution. However, the image is a good visual 

representation of the land cover changes since the image was taken. 
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Table 2: Wetland coverage percent for each considered year from 1990 to 2008. 

Year 1990 1995 2001 2005 2008 

Wetland coverage 

(%) 5.7509 5.0700 3.1798 1.9329 0.9250 

 

A diminishing trend in the extent of the wetlands was identified through comparison of 

each image. Approximately 4.8% cover loss was recognized in the area. The changes 

based on the supervised classifications for 1990 and 2008 are shown Figure 19. The 

wetland cells for 2008 are displayed atop the 1990 pixels, highlighting the approximate 

change over the 18 year period.  
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Figure 19: Comparison of change in wetland coverage based on the 1990 and 2008 supervised classifications. 

Wetlands present in 1990 appear to have suffered the most near Highland Valley 

Copper, along Highway 97, and adjacent to the Guichon Creek tributary (Fig 2). In some 

cases, isolated wetland cells for 2008 that do not appear in 1990 may be due to the 

difference in cell sizes; small clusters of cells classified as wetlands may have been 

filtered from the 1990 image, but not the 2008 image.  
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4. Discussion 

The results of comparison of remotely sensed images in this study proved to be a good 

method in determining the changes in wetlands over time. The ability to monitor 

wetlands without direct contact is a relatively simple and time effective task. Studying 

wetlands in direct contact can be a difficult task given their inaccessibility and 

unforgiving terrain to the field researcher. The use of inexpensive or free satellite 

imagery is a good approach to monitoring wetland conditions. However, limitations 

associated with coarser resolution images prevent from high accuracy classification of 

wetlands. The inconvenience of gap-filling SLC-off images is another downside to using 

Landsat images. Gap-filling is a demanding procedure does not guarantee totally 

accurate results.  

4.1 Defining classes 

Despite the high level of detail in the classified land use map used as a reference, many 

features were combined into a single class during the training stages. The spatial 

resolution of an image is a major influence on the quality of classified images; land 

cover features that dominate an area, such as forested land in this study, have a 

tendency to mask features of lesser cover, such as wetlands (Moody, 1998). Individually 

classifying each feature to the same degree of precision as the reference layer was 

unfeasible. Landsat data is frequently used for identifying general classes, while higher 

resolution sensors are better for much more detailed classification (Töyrä & Pietroniro, 

2005). Aggregating similar classes together is often necessary for the sake of accurate 

classification; allocation of similar features to individual classes in a relatively low 

resolution image may generate unwanted complexity in the results that could ultimately 

result in accuracy loss (Wright & Gallant, 2007; Baker, Lawrence, Montagne, Patten, 

2006). Although a wetland can be considered a label for a number of different sub-

classes, such as marsh, bog, or fen, attempts to isolate each type into its own individual 

class is unrealistic without good quality data or on-site corroboration. Landsat imagery 
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is often unable to distinguish between a feature’s different sub-classes (May, Pinder III & 

Kroh, 1997).  

4.2 Use of Landsat data 

Landsat data was an appropriate source for the purposes of this study. Many 

researchers, including those associated with Ducks Unlimited Canada, have often opted 

to use Landsat imagery due to its cost-effectiveness and appropriate quality for the 

project (Konrad & Rempel, 1990).  While aerial photography and field studies are often 

sufficient approaches to mapping land cover in smaller countries, they prove to be 

arduous methods for Canadian researchers (Wulder, 2003). Imagery from the Landsat 5 

and Landsat 7 missions has been instrumental in the generation of the land cover maps 

provided by GeoBase. The land cover map for Tunkwa was crucial for labelling each 

classified feature correctly; without physical interaction with the site, determining land 

cover classes based solely on spectral reflectance may be unreliable and implausible. 

Budget-limited studies, such as this one, will find the free data from the Landsat 

missions and the GeoBase database to be a blessing. Even without the addition of the 

panchromatic band from Landsat 7 images, the lower resolution Landsat 5 images have 

been successfully used for wetland mapping in the past (Wakelyn, 1990). Data retrieved 

from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite may have 

been a reasonable alternative for this study’s purposes as well. This imagery has been 

shown to be useful for the measurement of water surface levels (Weiss & Crabtree, 

2011). 

4.3 Limitations 

A number of limitations and obstacles associated with the data and methodology used 

in this study impacted the accuracy of the results. Although the processes executed 

using PANCROMA successfully generated useful gap-filled images, these images are still 

of slightly lower quality than Landsat’s SLC-on images. The gap-filled images are not an 

exact representation of reality, suggesting that misclassification of pixels is possible, and 
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accuracy may be reduced. Studies have been performed comparing the results of 

supervised classifications for an SLC-on image, and an SLC-off image that has been 

repaired using similar interpolations methods to this study, and it was found that loss of 

accuracy in the gap-filled image was very minimal (Chen, Zhu, Vogelmann, Gao, Jin, 

2011). Interpolating pixel values for SLC-off images is considered the best approach to 

gap-filling, despite is slow processing speed (Pringle et al., 2009). Fortunately, the gaps 

corresponding with the study area are near the center of each Landsat image and the 

gaps are much smaller than areas nearer to the image’s borders. Figure 20 shows two 

locations from the gapped 2008 image, highlighting the difference between pixel loss 

due to the failure of the scan-line corrector. Each area is shown at the same scale. 

Estimation of pixel values for a study area with larger gaps may have deteriorated the 

accuracy of the results to the point where they wouldn’t be considered usable.  

 

Figure 20: The left figure show a lake outside of the study area but found on the same, unclipped Landsat 7 satellite image 
from 2008. The right figure is Tunkwa Lake from the same image. Significantly more data loss is apparent in areas further 
from the center of satellite image. 

 

Misclassification of pixels also proved to be somewhat problematic throughout the 

study. The combination of atmospheric noise, such as the presence of aerosol particles 
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and water droplets, and mixed pixel information are two contributors to pixel 

misclassification (Elmahboub). It is sometimes difficult to measure changes in wetlands 

using images with a high degree of variability in land cover (Nielsen et al, 2008). The 

pixels representative of wetlands in some images were very similar to some pixels that 

belonged to the grassland feature type. Band manipulation and re-digitizing of training 

sites was often necessary to produce a good result for some years. For this reason, 

supervised classification was the preferable method; unsupervised classifications were 

tested, but the images this method produced were filled with a generous amount of 

noise or had apparent misclassification issues. The use of the land cover map from 

GeoBase as a reference for digitizing wetland training sites helped prevent subjectivity 

during the process. Some of the water bodies in the 2001 image were misclassified as 

cloud shadow as well, but this was a negligible shortcoming as the cloud clover was 

minimal and they didn’t coincide with any of the major wetlands. Post-classification 

processes have been found to be useful for improving supervised classification accuracy 

(Wang & Howarth, 1993). The filters used in this study produced cleaner looking images 

with visibly reduce noise, as shown in Figure 21. A large amalgamation of misclassified 

pixels can compound into a significant difference regarding the accuracy of the final 

product. These processes are valuable for eliminating this potential for error. 

 

Figure 21: Difference between an unprocessed supervised classification (left) and a filtered and smoothed classification 
(right). Post-processing is shown to be useful for removing excess pixel noise. 
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Retrieval of imagery was another difficulty throughout the study. Despite the abundance 

of available Landsat imagery, cloud presence was a major inhibitor in image selection. 

Minimal cloud cover is acceptable; the presence of clouds in the 2001 image was not a 

problem, but 0% cloud cover is optimal for image classification. However, finding 

images taken during the summer season on a clear day is not always possible. Imagery 

for 2010 or 2011 was either too cloudy or there was too much snow cover for 

classifications to be considered consistent and accurate enough for comparison. The 

limitations associated with both availability and cost of data is a major inhibitor to 

performing similar studies (Zomer et al, 2009). 

4.4 Inclusion of 1976 image 

Although the image taken in 1976 is of a significantly lower resolution, it is still valuable 

for this study’s purposes. The wetlands are easily identifiable in the image, and the cell 

size is an even ratio to the Landsat 5 and Landsat 7 images. This allows the user to 

assume cells that have been accurately classified with a high degree of confidence can 

be associated with the same cluster of cells in each other year’s image. For example, a 

60 m cell from 1976 could be matched with four 30 m cells from 1990 or 1995. 

Unfortunately, there is bound to be some degree of inaccuracy in this classification; 

more than one land cover feature can exist within a cell of 60 m resolution. It’s possible 

that cells found along the boundary of each feature type may be misclassified. For this 

reason, the cell values for each classified feature in the 1976 image were not considered 

to be directly proportionate to the features in the later years. It’s possible that digitizing 

the wetlands for this year may have been a marginally more accurate method, but 

without a reference that indicates where each wetland’s boundaries are, the process 

would be too subjective to be considered accurate. 

However, based solely on the aesthetics of the 1976 image, a number of correlations 

can be made between the more recent wetland loss and the apparent land cover 
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changes from 28 years prior. Figure 22 shows two false colour images using the NIR 

band that exemplify the major changes in land cover between 1976 and 2008.  

 

     Figure 22: 1976 (top) and 2008 (bottom) false colour images. Major land use 
      changes are apparent between the two, specifically the expansion of the copper 
      mine, and the impact of deforestation. 



35 
 

4.5 Land use in the study area 

Perhaps the most apparent difference is the expansion of Highland Valley Copper Mine. 

The body of water with the bright blue appearance is the mine’s tailings, which are the 

waste effluents produced during the mine’s processing (Engels & Dixon-Hardy, 2010). 

The construction of the dam used to contain the tailings seems to have been situated so 

the reservoir would cover a wetland; the land classified as wetland in the northwest 

section of the study area in the 1976 image from Figure 22 has vanished and been 

replaced by the tailings. The wetlands along Highway 97 are also in close proximity to 

the expanding copper mine. The desiccation of these wetlands may be a result of the 

ongoing operations at the mine. The presence of contaminated water contained within 

the tailings can be a potential hazard to the nearby environment (Fourie, 2009). 

Another major change seen in the study area is the rapid deforestation. The growth in 

number of cut blocks in the area is clearly apparent, and the trend in loss of forest cover 

is shown in Table 3.  

Table 3: Forest coverage for each considered year from 1990 to 2008. 

Year 1990 1995 2001 2005 2008 

Forest coverage 

(%) 75.8666 80.3453 75.2468 62.0844 60.0318 

Cut blocks in British Columbia are replanted within two years after harvest (Pypker & 

Fredeen, 2003). They were classified in this study as grassland or shrub based on their 

DNs. The increased coverage of both shrub and grassland is shown in Figure 23 in 

relation to the loss of forested areas. 
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Figure 23: Increase in coverage classified as grass and shrub is a direct result of forest loss within the study area. 

Changes in land use has been attributed to approximately 50% of the rise in CO2 levels 

in the atmosphere, and timber harvests in the boreal/sub-boreal regions of British 

Columbia have been associated with these trends (Pypker & Fredeen, 2003). Considering 

wetlands are a major contributor to carbon sequestration, the combination of their 

desiccation with frequent deforestation is likely to generate negative trends regarding 

the concentration of greenhouse gases in the atmosphere. 

4.6 Correlation vs. causation 

Despite that correlating change in land cover with the recession of wetlands is relatively 

easy through comparison of satellite images, this method does not necessarily allow the 

researcher to draw conclusions regarding causation. British Columbia’s Ministry of 

Environment’s guidelines on urban and rural development emphasize the importance of 

on-site environmental monitoring (British Columbia Ministry of Environment, 2006). The 

Riparian Areas Regulation outlines methodology to determine where development is 

having an impact on riparian habitats, which include wetlands (British Columbia Ministry 

of Environment). Remote sensing technology may be a major contributor to studies 

observing the link between land use and wetland degradation, but consideration of the 
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specific operations that contribute to changes in land use is beyond the realm of remote 

sensing. 

Skeetchestn Indian Band conducted a field study including Tunkwa Lake and other 

surrounding lakes with the intent of developing methods specializing in low impact 

timber harvesting in riparian zones (Karakatsoulis, Paul, Osborne, Ortner & Anderson, 

2005). The study found a decline of up to 25% in a number of plant species coverage 

near Tunkwa Lake as a direct result of timber harvesting. These finding suggest that the 

wetland loss near Tunkwa may be partially due to the widespread deforestation in the 

area.  

4.7 Impact of climate change 

The threat of climate change is also a concerning factor that may attribute to wetland 

loss (Hartig et al., 2002). Current trends suggest that a future lack of winter snow for 

groundwater recharge and extended summer droughts are a potential threat to 

wetlands (Symmetree Consulting Group, 2009). Temperature trends during the 20th 

century in British Columbia appear to be mostly increases in daily minimum 

temperatures, rather than increases in maximum temperatures, resulting in a 1.1  C rise in 

the interior for this century (Taylor, 2004).  However, the impact of climate change on 

wetlands in British Columbia is reported to be potentially more problematic for the 

future than it has in recent decades (Bunnell, Kremsater, Moy & Wells, 2011). 

Environment Canada stresses that the future impacts of climate change will be much 

more apparent than the current impacts if measures aren’t taken to help reduce 

greenhouse gas emissions (Environment Canada, 2007). This suggests that the wetlands 

of Tunkwa watershed may be affected more by anthropogenic interaction than any 

temperature or precipitation fluctuations. 
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4.8 Value of remote sensing 

Although using remote sensing may not be the most appropriate technique in 

identifying the need to implement wetland management programs, it has proven to be 

a useful tool in conjunction with GIS initiatives to suggest locations for wetland 

restoration projects. A study in northeast China combined assessment of farmland 

productivity with hydrologic modeling in order to identify farmland sites that were 

suitable for conversion to wetlands (Huang et al., 2010). In cases where wetland 

conservation or restoration is too late, similar methods could be followed to suggest 

conversion projects.  

Depending on the aims of a study, alternative sources of satellite imagery may be 

preferable. Studies have been performed that test the accuracy of using and classifying 

satellite images using different methods (Sader et al., 1995). Monitoring a wetland using 

a poorly classified or very low resolution image isn’t an advisable approach to wetland 

management. If the data is unfit for use, it would not be worthwhile to attempt to 

perform any sort of analysis through comparison. It has been noted that it can be 

difficult to obtain data for wetlands that do not interfere with land use practices in some 

areas; wetlands that are more isolated from anthropogenic interaction tend to receive 

less attention than those closer in proximity (Rebelo et al, 2009). The value of high 

resolution satellite imagery becomes apparent in these scenarios. Wetland vegetation 

has been successfully modeled using LiDAR (Light Detection and Ranging) and 

Quickbird multispectral data (Cook et al, 2009). Land cover uncertainties associated with 

the use of coarse resolution data can be evaluated with fine resolution multispectral 

imagery from the Quickbird or IKONOS missions (Morisette, Nickeson, David, Wang, 

Tian, Woodcock, Shabanov, Hansen, Cohen, Oetter, Kennedy, 2003). Although the use of 

this imagery may be more costly, the data has been successfully implemented in 

validation of studies using lower resolution images. Another parameter that should be 

considered by researchers is the scale of the study area. Depending on the cell 
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resolution of a satellite image, different scales may be more appropriate for wetland 

studies. Images with fine resolutions are often useful for performing studies at a local 

scale (Sawaya, Olmanson, Heinert, Brezonik, Bauer, 2003). The Landsat images used in 

this study would be appropriate for a more localized scale study of a wetland; a smaller 

study area reduces the likelihood of pixel misclassification. Wetland mapping for the 

purpose of generating a land cover map or a wetland inventory may be appropriate at 

smaller scales, but monitoring wetland change over time may be preferable at more 

localized scales. Figure 24 shows the changes identified in an individual wetland 

between 1990 and 2008. 

 

Figure 24: Clear changes in land cover can be identified at a more localized scale using Landsat imagery. 

The methods used in this study can be implemented by any organization that is 

considering starting a wetland preservation initiative. The ability to easily monitor 

wetland health allows the user to decide at what point a wetland is beyond the point of 

conservation, and restoration becomes the solution. Unfortunately, some wetland 

policies favour restoring or creating wetlands over protecting them (Whigham, 1999). 

This has proven to be an undesirable approach in many cases, as restored or created 

wetlands may not function in the same manner as natural wetlands. However, remote 

sensing techniques remain useful for monitoring wetlands irrespective of these policies. 
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4.9 The need for wetland monitoring 

This study, among many others, has emphasized the need for wetland monitoring, and 

future collaboration and effort is necessary for their survival. Further measurement of 

the wetlands in the Tunkwa watershed is suggested using any moderate or fine 

resolution imagery. Data collected from the next Landsat mission, named the Landsat 

Data Continuity Mission or Landsat 8, which is scheduled to launch in December of 

2012, may be a great source of imagery for this purpose (NASA, 2011). However, 

considering this study area is a relatively small portion of the Thompson/Okanagan 

region is British Columbia, the generation of a wetland inventory for other watersheds 

around Kamloops would be a significant contribution to organizations such as DUC that 

strive to preserve these wetlands. Results from this study should not be extrapolated to 

other nearby wetland areas and assumed to be comparable; the unique land use 

practices in this region, primarily the growth of the copper mine, may produce different 

classification results than in other watersheds. In order to identify appropriate wetlands 

for restoration, the health and rate of desiccation of other wetlands in the region should 

be considered as well. Due to the abundance of land use practices in the Tunkwa area, 

including the expansion of the Highland Valley Copper Mine and the forestry 

operations, wetlands may be more valuable in other areas, such as regions where 

agriculture is abundant. 

The combination of field studies with remote sensing for wetland management and 

monitoring purposes is a good approach to generating accurate descriptions of these 

sites. Knowledge of the hydrologic processes, vegetative cover, and land use impacts 

associated with wetlands would be useful for determining their health and suggesting 

preservation initiatives (Zomer et al., 2009; Nielsen et al., 2008). Similarly, the availability 

of wetland inventories are a supportive of these studies, and the creation of a Canadian 

wetland inventory would be largely beneficial to those willing to invest the time and 

money to conservation efforts. The collaborative efforts of both approaches to wetland 
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monitoring would be an important step towards managing them for the future. With 

readily available inventory data, management can assess the degree to which any sort of 

land use can be implemented before significant impacts to wetlands become apparent 

(Melendez-Pastor et al., 2010).  

5. Conclusion and future recommendations 

This study exemplifies an approach to monitoring wetlands using a time-series analysis 

technique of comparing remotely sensed images from Landsat missions. The link 

between human development and wetland recession can be measured through image 

classification, given that data is available and affordable for researches. Although image 

quality is an important factor in classification accuracy, moderate resolution imagery has 

been proven to be appropriate for measuring wetland health. Considering wetlands are 

so valuable to both humans and wildlife, the need for a comprehensive wetland 

database for Canada should be apparent. Fortunately, optimism is expressed that 

compilation of a Canadian wetland inventory, much like the aforementioned VMI in 

Sweden, will be completed in future years. With frequently updated inventories for 

wetlands, monitoring their well-being becomes much more feasible, and wetland health 

can be considered before the implementation of any land use practices.  
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Appendix A 

 

Figure 1: False colour Landsat image (1976) 
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Figure 2: Landsat image (1990) 
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Figure 3: Landsat image (1995) 
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Figure 4: Landsat image (2001) 
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Figure 5: Landsat image (2005 panchromatic band) 
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Figure 6: Landsat image (2008 panchromatic band) 


